题目内容
已知二次函数f(x)=ax2+bx+c(a≠0)的导函数为f′(x),且f(-x)=f(x),f(1)=1,f′(-1)=-2.数列{an}满足a1=1,且当n≥2,n∈N*时,an=n2[| 1 |
| f(1) |
| 1 |
| f(2) |
| 1 |
| f(n-1) |
(1)求函数f(x)的解析式;
(2)当n≥2且n∈N*时,比较
| 1+an |
| an+1 |
| f(n+1) |
| f(n) |
(3)比较(1+
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| an |
分析:(1)利用由f(-x)=f(x),有b=0,从而f(x)=ax2+c,f(1)=1,f′(-1)=-2,可求a、c的值,从而可求函数表达式;
(2)分别表示出分子、分母,进而可得
=
;
(3)将连乘积表示为(1+
)(1+
)(1+
)L(1+
)=
•
•
•
•
•an+1 =
=2(1+
+
),再用裂项求和法,利用
<
=
-
可得结论.
(2)分别表示出分子、分母,进而可得
| 1+an |
| an+1 |
| f(n) |
| f(n+1) |
(3)将连乘积表示为(1+
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| an |
| 1+a1 |
| a1 |
| 1 |
| a2 |
| 1+a2 |
| a3 |
| 1+a3 |
| a4 |
| 1+an |
| an+1 |
| 2an+1 |
| (n+1)2 |
| 1 |
| 22 |
| 1 |
| n2 |
| 1 |
| n2 |
| 1 |
| n(n-1) |
| 1 |
| n-1 |
| 1 |
| n |
解答:解:(1)∵f(x)=ax2+bx+c,∴由f(-x)=f(x),有b=0,得f(x)=ax2+c.又f(1)=1,f′(-1)=-2,∴a+c=1,2a×(-1)=-2,∴a=1,c=0,∴f(x)=x2.
(2)∵f(n)=n2,∴an=n2[ 1+
+…+
)].,∴1+an=n2[ 1+
+…+
)],an+1=(n+1)2[ 1+
+…+
)],∴
=
.
(3)由题意可得a2=4;当n=1时,有1+
=2<4.当n≥2且n∈N*时,
(1+
)(1+
)(1+
)L(1+
)=
•
•
•
•
•an+1 =
=2(1+
+
)<2[1+(1-
)+(
-
)+(
-
)]=4-
<4(
<
=
-
)
所以,对任意n∈N*有(1+
)(1+
)(1+
)L(1+
)<4.
(2)∵f(n)=n2,∴an=n2[ 1+
| 1 |
| 22 |
| 1 |
| (n-1)2 |
| 1 |
| 22 |
| 1 |
| n2 |
| 1 |
| 22 |
| 1 |
| n2 |
| 1+an |
| an+1 |
| f(n) |
| f(n+1) |
(3)由题意可得a2=4;当n=1时,有1+
| 1 |
| a1 |
(1+
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| an |
| 1+a1 |
| a1 |
| 1 |
| a2 |
| 1+a2 |
| a3 |
| 1+a3 |
| a4 |
| 1+an |
| an+1 |
| 2an+1 |
| (n+1)2 |
| 1 |
| 22 |
| 1 |
| n2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n-1 |
| 1 |
| n |
| 2 |
| n |
| 1 |
| n2 |
| 1 |
| n(n-1) |
| 1 |
| n-1 |
| 1 |
| n |
所以,对任意n∈N*有(1+
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| an |
点评:本题考查数列与不等式的结合,考查裂项求和、放缩法,有一定的技巧.
练习册系列答案
相关题目