题目内容
设数列{an}满足a1=2,an+1=an+3•2n-1.
(1)求数列{an}的通项公式an;
(2)令bn=nan,求数列{bn}的前n项和Sn;
(3)令cn=log2
,证明:
+
+…+
<1(n≥2).
(1)求数列{an}的通项公式an;
(2)令bn=nan,求数列{bn}的前n项和Sn;
(3)令cn=log2
| an+1 |
| 3 |
| 1 |
| c2c3 |
| 1 |
| c3c4 |
| 1 |
| cncn+1 |
分析:(1)累加法:注意验证n=1的情形;
(2)表示出bn,然后利用分组求和得,Sn=3[(1•20+2•21+3•22+…+n•2n-1)-(1+2+3+…+n)],令x=1•20+2•21+3•22+…+n•2n-1,运用错位相减法可得x,代入Sn即可;
(3)由an=3×2n-1-1可得cn,利用裂项相消法可化简
+
+…+
,由其结果可得证;
(2)表示出bn,然后利用分组求和得,Sn=3[(1•20+2•21+3•22+…+n•2n-1)-(1+2+3+…+n)],令x=1•20+2•21+3•22+…+n•2n-1,运用错位相减法可得x,代入Sn即可;
(3)由an=3×2n-1-1可得cn,利用裂项相消法可化简
| 1 |
| c2c3 |
| 1 |
| c3c4 |
| 1 |
| cncn+1 |
解答:解:(1)∵a1=2,an+1-an=3•2n-1,
∴an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)
=2+3×20+3×21+3×22+…+3×2n-2
=2+3(20+21+22+…+2n-2)
=2+3×
=3×2n-1-1(n≥2),
经验证n=1也成立,∴an=3×2n-1-1;
(2)bn=nan=3n×2n-1-n,
b1=3×1•20-1,b2=3×2•21-2,b3=3×3•22-3,…,bn=3n•2n-1-n,
∴Sn=3[(1•20+2•21+3•22+…+n•2n-1)-(1+2+3+…+n)],
设x=1•20+2•21+3•22+…+n•2n-1①,则2x=1•21+2•22+3•23+…+n•2n②,
①-②得,-x=1+21+22+23+…+2n-1-n•2n
=1+
-n•2n=-1+(1-n)•2n,
∴x=(n-1)2n+1,
∴Sn=3[(n-1)2n+1-
],
∴Sn=(3n-3)•2n-
n(n+1)+3;
(3)∵an=3×2n-1-1;
∴cn=log22n-1=n-1,
+
+…+
=
+
+…+
=1-
+
-
+…+
-
=1-
<1.
∴an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)
=2+3×20+3×21+3×22+…+3×2n-2
=2+3(20+21+22+…+2n-2)
=2+3×
| 1(1-2n-1) |
| 1-2 |
经验证n=1也成立,∴an=3×2n-1-1;
(2)bn=nan=3n×2n-1-n,
b1=3×1•20-1,b2=3×2•21-2,b3=3×3•22-3,…,bn=3n•2n-1-n,
∴Sn=3[(1•20+2•21+3•22+…+n•2n-1)-(1+2+3+…+n)],
设x=1•20+2•21+3•22+…+n•2n-1①,则2x=1•21+2•22+3•23+…+n•2n②,
①-②得,-x=1+21+22+23+…+2n-1-n•2n
=1+
| 2(1-2n-1) |
| 1-2 |
∴x=(n-1)2n+1,
∴Sn=3[(n-1)2n+1-
| n(n+1) |
| 2 |
∴Sn=(3n-3)•2n-
| 3 |
| 2 |
(3)∵an=3×2n-1-1;
∴cn=log22n-1=n-1,
| 1 |
| c2c3 |
| 1 |
| c3c4 |
| 1 |
| cncn+1 |
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| (n-1)n |
=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n-1 |
| 1 |
| n |
| 1 |
| n |
点评:本题考查由递推式求数列通项、错位相减法、裂项相消法对数列求和,考查学生的运算求解能力,综合性较强,难度较大.
练习册系列答案
相关题目
设数列{an}满足a1=1,a2+a4=6,且对任意n∈N*,函数f(x)=(an-an+1+an+2)x+an+1?cosx-an+2sinx满足f′(
)=0若cn=an+
,则数列{cn}的前n项和Sn为( )
| π |
| 2 |
| 1 |
| 2an |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|