题目内容

设数列{an}满足a1=2,an+1=an+3•2n-1
(1)求数列{an}的通项公式an
(2)令bn=nan,求数列{bn}的前n项和Sn
(3)令cn=log2
an+1
3
,证明:
1
c2c3
+
1
c3c4
+…+
1
cncn+1
<1(n≥2).
分析:(1)累加法:注意验证n=1的情形;
(2)表示出bn,然后利用分组求和得,Sn=3[(1•20+2•21+3•22+…+n•2n-1)-(1+2+3+…+n)],令x=1•20+2•21+3•22+…+n•2n-1,运用错位相减法可得x,代入Sn即可;
(3)由an=3×2n-1-1可得cn,利用裂项相消法可化简
1
c2c3
+
1
c3c4
+…+
1
cncn+1
,由其结果可得证;
解答:解:(1)∵a1=2,an+1-an=3•2n-1
∴an=a1+(a2-a1)+(a3-a2)+…+(an-an-1
=2+3×20+3×21+3×22+…+3×2n-2
=2+3(20+21+22+…+2n-2
=2+3×
1(1-2n-1)
1-2
=3×2n-1-1(n≥2),
经验证n=1也成立,∴an=3×2n-1-1
(2)bn=nan=3n×2n-1-n
b1=3×1•20-1b2=3×2•21-2b3=3×3•22-3,…,bn=3n•2n-1-n
∴Sn=3[(1•20+2•21+3•22+…+n•2n-1)-(1+2+3+…+n)],
设x=1•20+2•21+3•22+…+n•2n-1①,则2x=1•21+2•22+3•23+…+n•2n②,
①-②得,-x=1+21+22+23+…+2n-1-n•2n
=1+
2(1-2n-1)
1-2
-n•2n=-1+(1-n)•2n
∴x=(n-1)2n+1,
∴Sn=3[(n-1)2n+1-
n(n+1)
2
],
∴Sn=(3n-3)•2n-
3
2
n(n+1)+3

(3)∵an=3×2n-1-1
∴cn=log22n-1=n-1,
1
c2c3
+
1
c3c4
+…+
1
cncn+1
=
1
1×2
+
1
2×3
+…+
1
(n-1)n

=1-
1
2
+
1
2
-
1
3
+…+
1
n-1
-
1
n
=1-
1
n
<1.
点评:本题考查由递推式求数列通项、错位相减法、裂项相消法对数列求和,考查学生的运算求解能力,综合性较强,难度较大.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网