题目内容
设数列{an}满足a1=1,a2=2,an=
(an-1+2an-2)(n=3,4,…).数列{bn}满足b1=1,bn(n=2,3,…)是非零整数,且对任意的正整数m和自然数k,都有-1≤bm+bm+1+…+bm+k≤1.
(1)求数列{an}和{bn}的通项公式;
(2)记cn=nanbn(n=1,2,…),求数列{cn}的前n项和Sn.
| 1 |
| 3 |
(1)求数列{an}和{bn}的通项公式;
(2)记cn=nanbn(n=1,2,…),求数列{cn}的前n项和Sn.
(1)由an=
(an-1-an-2)得an-an-1=-
(an-1-an-2)(n≥3)
又a2-a1=1≠0,
∴数列{an+1-an}是首项为1公比为-
的等比数列,an+1-an=(-
)n-1
an=a1+(a2-a1)+(a3-a2)+(a4-a3)++(an-an-1)
=1+1+(-
)+(-
)2++(-
)n-2
=1+
=
-
(-
)n-1,
当n为奇数时当n为偶数时
由
得b2=-1,
由
得b3=1,
同理可得当n为偶数时,bn=-1;当n为奇数时,bn=1;
因此bn=
.
(2)cn=nanbn=
Sn=c1+c2+c3+c4++cn
当n为奇数时,Sn=(
-2×
+3×
-4×
++
n)-
[1×(
)0+2×(
)1+3×(
)2+4×(
)3++n(
)n-1]=
-
[1×(
)0+2×(
)1+3×(
)2+4×(
)3++n(
)n-1]
当n为偶数时
Sn=(
-2×
+3×
-4×
+-
n)-
[1×(
)0+2×(
)1+3×(
)2+4×(
)3++n(
)n-1]=-
-
[1×(
)0+2×(
)1+3×(
)2+4×(
)3++n(
)n-1]
令Tn=1×(
)0+2×(
)1+3×(
)2+4×(
)3++n(
)n-1①
①×
得:
Tn=1×(
)1+2×(
)2+3×(
)3+4×(
)4++n(
)n②
①-②得:
Tn=1+(
)1+(
)2+(
)3+(
)4++(
)n-1-n(
)n=
-n(
)n=3-(3+n)(
)n
∴Tn=9-(9+3n)(
)n
当n为奇数时当n为偶数时
因此Sn=
| 1 |
| 3 |
| 2 |
| 3 |
又a2-a1=1≠0,
∴数列{an+1-an}是首项为1公比为-
| 2 |
| 3 |
| 2 |
| 3 |
an=a1+(a2-a1)+(a3-a2)+(a4-a3)++(an-an-1)
=1+1+(-
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
=1+
1-(-
| ||
1+
|
| 8 |
| 5 |
| 3 |
| 5 |
| 2 |
| 3 |
当n为奇数时当n为偶数时
由
|
得b2=-1,
由
|
得b3=1,
同理可得当n为偶数时,bn=-1;当n为奇数时,bn=1;
因此bn=
|
(2)cn=nanbn=
|
Sn=c1+c2+c3+c4++cn
当n为奇数时,Sn=(
| 8 |
| 5 |
| 8 |
| 5 |
| 8 |
| 5 |
| 8 |
| 5 |
| 8 |
| 5 |
| 3 |
| 5 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 4(n+1) |
| 5 |
| 3 |
| 5 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
当n为偶数时
Sn=(
| 8 |
| 5 |
| 8 |
| 5 |
| 8 |
| 5 |
| 8 |
| 5 |
| 8 |
| 5 |
| 3 |
| 5 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 4n |
| 5 |
| 3 |
| 5 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
令Tn=1×(
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
①×
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
①-②得:
| 1 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
1-(
| ||
1-
|
| 2 |
| 3 |
| 2 |
| 3 |
∴Tn=9-(9+3n)(
| 2 |
| 3 |
当n为奇数时当n为偶数时
因此Sn=
|
练习册系列答案
相关题目
设数列{an}满足a1=1,a2+a4=6,且对任意n∈N*,函数f(x)=(an-an+1+an+2)x+an+1?cosx-an+2sinx满足f′(
)=0若cn=an+
,则数列{cn}的前n项和Sn为( )
| π |
| 2 |
| 1 |
| 2an |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|