题目内容

已知f(x)是定义在R上的奇函数,当x>0时,f(x)=lgx,则x∈R时,函数的解析式f(x)=
lgx       x>0
0          x=0
-lg(-x) x<0
lgx       x>0
0          x=0
-lg(-x) x<0
分析:要求函数的解析式,已知已有x>0时的函数解析式,只要根据题意求出x<0及x=0时的即可,根据奇函数的性质容易得f(0)=0,而x<0时,由-x>0及f(-x)=-f(x)可求
解答:解:设x<0则-x>0
∵当x>0时,f(x)=lgx
∴f(-x)=lg(-x)
由函数f(x)为奇函数可得f(-x)=-f(x)
∴-f(x)=lg(-x)
即f(x)=-lg(-x),x<0
∵f(0)=0
∴f(x)=
lgx,x>0
0,x=0
-lg(-x),x<0

故答案为:
lgx,x>0
0,x=0
-lg(-x),x<0
点评:本题主要考查了利用函数的奇偶性求解函数的解析式,解题中要注意函数的定义域是R,不用漏掉对x=0时的考虑.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网