题目内容
|
分析:(1)利用倍角公式和两角和的正弦公式及周期公式即可得出;
(2)利用(1)及已知可得sin(x0-
),及x0-
的范围,进而利用拆分角x0=x0-
+
即可得出.
(2)利用(1)及已知可得sin(x0-
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
解答:解:(1)f(x)=
sin(2x-
)+1-cos(2x-
)
=2sin(2x-
)+1,
∴T=
=2.
(2)∵f(
)=
,∴2sin((x0-
)+1=
,
∴sin(x0-
)=
.又
<x0<
.
∴
<x0-
<π,
∴cos(x0-
)=-
.
∴cosx0=cos[(x0-
)+
]
=cos(x0-
)cos
-sin(x0-
)sin
=-
×
-
×
=-
.
| 3 |
| π |
| 6 |
| π |
| 6 |
=2sin(2x-
| π |
| 3 |
∴T=
| 2π |
| π |
(2)∵f(
| x0 |
| 2 |
| 5 |
| 3 |
| π |
| 3 |
| 5 |
| 3 |
∴sin(x0-
| π |
| 3 |
| 1 |
| 3 |
| 5π |
| 6 |
| 4π |
| 3 |
∴
| π |
| 2 |
| π |
| 3 |
∴cos(x0-
| π |
| 3 |
2
| ||
| 3 |
∴cosx0=cos[(x0-
| π |
| 3 |
| π |
| 3 |
=cos(x0-
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
=-
2
| ||
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| ||
| 2 |
=-
2
| ||||
| 6 |
点评:熟练掌握倍角公式和两角和的正弦余弦公式及周期公式、拆分角是解题的关键.
练习册系列答案
相关题目