题目内容
求值:cos225°+tan240°+sin(-60°)+cot(-570°)=
-
-
| ||
| 2 |
| ||
| 2 |
-
-
.
| ||
| 2 |
| ||
| 2 |
分析:直接根据诱导公式把所求问题转化为,再结合特殊角的三角函数值即可求出结论.
解答:解:cos225°+tan240°+sin(-60°)+cot(-570°)
=cos(45°+180°)+tan(60°+180°)-sin60°+cot(720°-570°)
=-cos45°+tan60°-sin60°+cot150°
=-cos45°+tan60°-sin60°+cot(180°-30°)
═-cos45°+tan60°-sin60°-cot30°
=-
+
-
-
=-
-
.
故答案为:-
-
.
=cos(45°+180°)+tan(60°+180°)-sin60°+cot(720°-570°)
=-cos45°+tan60°-sin60°+cot150°
=-cos45°+tan60°-sin60°+cot(180°-30°)
═-cos45°+tan60°-sin60°-cot30°
=-
| ||
| 2 |
| 3 |
| ||
| 2 |
| 3 |
=-
| ||
| 2 |
| ||
| 2 |
故答案为:-
| ||
| 2 |
| ||
| 2 |
点评:本题主要考查诱导公式的应用以及特殊角的三角函数值.解决这类问题的关键在于对公式的熟练掌握以及灵活运用.
练习册系列答案
相关题目