题目内容
已知函数f(x)=lg(1+
),点An(n,0)(n∈N*),过点An作直线x=n交f(x)的图象于点Bn,设O为坐标原点.记θn=∠Bn+1AnAn+1(n∈N*),化简求和式Sn=tanθ1+tanθ2+…+tanθn=______.
| 1 |
| x |
由题意点An(n,0)(n∈N*),过点An作直线x=n交f(x)的图象于点Bn,
∴An(n,0),Bn+1(n+1,lg(1+
))
∵θn=∠Bn+1AnAn+1,
∴tanθn=
lg(1+
)=lg(n+2)-lg(n+1)
∴Sn=tanθ1+tanθ2+…+tanθn=lg3-lg2+lg4-lg3+…+lg(n+2)-lg(n+1)=lg(n+2)-lg2
故答案为:lg(n+2)-lg2
∴An(n,0),Bn+1(n+1,lg(1+
| 1 |
| n+1 |
∵θn=∠Bn+1AnAn+1,
∴tanθn=
lg(1+
| ||
| (n+1)-n |
| 1 |
| n+1 |
∴Sn=tanθ1+tanθ2+…+tanθn=lg3-lg2+lg4-lg3+…+lg(n+2)-lg(n+1)=lg(n+2)-lg2
故答案为:lg(n+2)-lg2
练习册系列答案
相关题目