题目内容
若定义在R上的偶函数
满足
,且当
时,
则方程
的解个数是 ( )
A.0个 B.2个 C.4个 D.6个
【答案】
C
【解析】
试题分析::∵偶函数f(x)满足f(x+2)=f(x),故函数的周期为2.
当x∈[0,1]时,f(x)=x,故当x∈[-1,0]时,f(x)=-x.
则方程f(x)=log3|x|的根的个数,等于函数y=f(x)的图象与函数y=log3|x|的图象的交点个数.
在同一个坐标系中画出函数y=f(x)的图象与函数y=log3|x|的图象,如图所示:
![]()
显然函数y=f(x)的图象与函数y=log3|x|的图象有4个交点,
故选C.
考点:函数的性质以及运用
点评:本题考查了根的存在性及根的个数判断,以及函数与方程的思想,解答关键是运用数形结合的思想,属于中档题。
练习册系列答案
相关题目
若定义在R上的偶函数f(x)和奇函数g(x)满足f(x)+g(x)=ex,则g(x)=( )
| A、ex-e-x | ||
B、
| ||
C、
| ||
D、
|
若定义在R上的偶函数f(x)在(-∞,0]上是增函数,且f(-
)=2,那么不等式f(sin(2x-
))<2在[-
,
]上的解集为( )
| 1 |
| 2 |
| π |
| 3 |
| π |
| 2 |
| π |
| 2 |
A、[-
| ||||||||||||
B、[-
| ||||||||||||
C、[-
| ||||||||||||
D、[-
|
若定义在R上的偶函数f(x)满足f(x+1)=-f(x),且在区间[0,1]上单调递减,则( )
A、f(2)<f(
| ||
B、f(1)<f(2)<f(
| ||
C、f(
| ||
D、f(1)<f(
|