题目内容
如图是某四棱锥的三视图,求该几何体的表面积.
由三视图可知原四棱锥如图所示:底面是一个边长分别为2,6的矩形,侧面PDC⊥底面ABCD,且OP⊥CD,OD=OC=3,OP=4.
由此可得:PC=
=5,PA=PB=
=
,则等腰△PAB的底边AB上的高=
=2
,∴S△=
×6×2
=6
.∵侧面PDC⊥底面ABCD,BC⊥交线CD,∴BC⊥PC,同理AD⊥PD,

∴S△PCB=S△PDA=
×2×5=5.
∵OP⊥CD,∴S△PCD=
×6×4=12.
又S矩形ABCD=6×2=12.
∴S四棱锥P-ABCD=12+2×5+12+6
=34+6
.
由此可得:PC=
| 32+42 |
| 42+32+22 |
| 29 |
(
|
| 5 |
| 1 |
| 2 |
| 5 |
| 5 |
∴S△PCB=S△PDA=
| 1 |
| 2 |
∵OP⊥CD,∴S△PCD=
| 1 |
| 2 |
又S矩形ABCD=6×2=12.
∴S四棱锥P-ABCD=12+2×5+12+6
| 5 |
| 5 |
练习册系列答案
相关题目