题目内容
设数列{an}的前n项和为Sn,对任意的正整数n,都有an=3Sn+1成立.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)记bn=(-1)n•(2n-1)•an,求数列{bn}的前n项和为Tn.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)记bn=(-1)n•(2n-1)•an,求数列{bn}的前n项和为Tn.
分析:(1)当n=1时,由a1=3S1+1求出a1=-
,又an=3Sn+1,an+1=3Sn+1+1,相减可得
=-
,从而求得数列{an}的通项公式.
(2)先依据题意求出bn=(-1)n•(2n-1)•(-
)n=(2n-1)(
)n,再利用错位相减法求数列的前n项和.
| 1 |
| 2 |
| an+1 |
| an |
| 1 |
| 2 |
(2)先依据题意求出bn=(-1)n•(2n-1)•(-
| 1 |
| 2 |
| 1 |
| 2 |
解答:解:(1)当n=1时,a1=3S1+1,∴a1=-
.
又∵an=3Sn+1,an+1=3Sn+1+1,
∴an+1-an=3an+1,即
=-
,∴an=(-
)n.
(2)bn=(-1)n•(2n-1)•(-
)n=(2n-1)(
)n,
∴Tn=1×
+3×(
)2+5×(
)3+…+(2n-1)×(
)n.…①
故
Tn=(
)2+3×(
)3+…+(2n-3)×(
)n+(2n-1)×(
)n+1.…②
①-②得:
Tn=
+2×[(
)2+(
)3+…+(
)n]-(2n-1)×(
)n+1,
∴Tn=1+4×
-2×(2n-1)×(
)n+1=1+2[1-(
)n-1]-2•(2n-1)•(
)n+1
=3-(n+
)(
)n-1.
| 1 |
| 2 |
又∵an=3Sn+1,an+1=3Sn+1+1,
∴an+1-an=3an+1,即
| an+1 |
| an |
| 1 |
| 2 |
| 1 |
| 2 |
(2)bn=(-1)n•(2n-1)•(-
| 1 |
| 2 |
| 1 |
| 2 |
∴Tn=1×
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
故
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
①-②得:
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴Tn=1+4×
(
| ||||
1-
|
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=3-(n+
| 3 |
| 2 |
| 1 |
| 2 |
点评:本题主要考查数列的前n项和与第n项之间的关系,用错位相减法求数列的前n项和,属于中档题.
练习册系列答案
相关题目