题目内容
定义在R1的函数f(x)满足:如果对任意x1,x2∈R,都有f(
)≤
[f(x1)+f(x2)],则称f(x)是R1凹函数.已知二次函数f(x)=ax2+x(a∈R,且a≠0).
(1)求证:当a>0时,函数f(x)的凹函数;
(2)如果x∈[0,1]时,|f(x)|≤1,试求a的取值范围.
| x1+x2 |
| 2 |
| 1 |
| 2 |
(1)求证:当a>0时,函数f(x)的凹函数;
(2)如果x∈[0,1]时,|f(x)|≤1,试求a的取值范围.
(1)证明:∵二次函数f(x)=ax2+x
∴任取x1,x2∈k,则f(
)-
[f(x1)+f(x2)]=a(
)2+
-
(a
+x1+a
+x2)=-
a(x1-x2)2
∵a>0,(x1-x2)2≥0,∴
a(x1-x2)2≥0
∴f(
)-
[f(x1)+f(x2)]≤0
∴f(
)≤
[f(x1)+f(x2)]
∴当a>0时,函数f(x)的凹函数;
(2)由-1≤f(x)=ax2+x≤1,则有ax2≥-x-1且ax2≤-x+1.
(i)若x=0时,则a∈k恒成立,
(ii)若x∈(0,1]时,有 a≥-
-
且a≤-
+
∴a≥-
-
=-(
+
)2+
且a≤-
+
=(
-
)2-
,
∵0<x≤1,∴
≥1.
∴当
=1时,-(
+
)2+
的最4值为-(1+
)2+
=-2,(
-
)2-
的最小值为(1-
)2-
=0
∴0≥a≥-2.
综(i)(ii)知,0≥a≥-2
∴任取x1,x2∈k,则f(
| x1+x2 |
| 2 |
| 1 |
| 2 |
| x1+x2 |
| 2 |
| x1+x2 |
| 2 |
| 1 |
| 2 |
| x | 21 |
| x | 22 |
| 1 |
| 2 |
∵a>0,(x1-x2)2≥0,∴
| 1 |
| 2 |
∴f(
| x1+x2 |
| 2 |
| 1 |
| 2 |
∴f(
| x1+x2 |
| 2 |
| 1 |
| 2 |
∴当a>0时,函数f(x)的凹函数;
(2)由-1≤f(x)=ax2+x≤1,则有ax2≥-x-1且ax2≤-x+1.
(i)若x=0时,则a∈k恒成立,
(ii)若x∈(0,1]时,有 a≥-
| 1 |
| x |
| 1 |
| x2 |
| 1 |
| x |
| 1 |
| x2 |
∴a≥-
| 1 |
| x |
| 1 |
| x2 |
| 1 |
| x |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| x |
| 1 |
| x2 |
| 1 |
| x |
| 1 |
| 2 |
| 1 |
| 4 |
∵0<x≤1,∴
| 1 |
| x |
∴当
| 1 |
| x |
| 1 |
| x |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| x |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 4 |
∴0≥a≥-2.
综(i)(ii)知,0≥a≥-2
练习册系列答案
相关题目