题目内容

已知函数y=sin2x+2sinxcosx+3cos2x,x∈R.
(1)求该函数的单调增区间;
(2)求该函数的最大值及对应的x的值;
(3)求该函数的对称轴方程与对称中心坐标.
【答案】分析:(1)利用二倍角公式,降次升角,以及两角和的正弦函数,化简函数y=sin2x+2sinxcosx+3cos2x为y=,利用正弦函数的单调增区间,求该函数的单调增区间;
(2)利用正弦函数的最值以及取得最值时的x值,直接求该函数的最大值及对应的x的值;
(3)利用正弦函数的对称轴和对称中心,直接求该函数的对称轴方程与对称中心坐标.
解答:解:y=sin2x+2sinxcosx+3cos2x=
=sin2x+cos2x+2=.(5分)
(1)由,得
所以函数的单调增区间为(8分)
(2)令,得
所以当时,.(12分)
(3)由,得
所以该函数的对称轴方程为
,得
所以,该函数的对称中心为:.(16分)
点评:本题是基础题,考查正弦函数的单调性,对称轴方程,对称中心,最值,利用基本函数的基本性质,是集合本题的关键,基本知识掌握的好坏,直接影响解题效果.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网