题目内容

(本题满分15分) 设抛物线C1:x 2=4 y的焦点为F,曲线C2与C1关于原点对称.

(Ⅰ) 求曲线C2的方程;

(Ⅱ) 曲线C2上是否存在一点P(异于原点),过点P作C1的两条切线PA,PB,切点A,B,满足| AB |是 | FA | 与 | FB | 的等差中项?若存在,求出点P的坐标;若不存在,请说明理由.

 

 

 

 

 

 

 

 

 

【答案】

(Ⅰ)解;因为曲线关于原点对称,又的方程

所以方程为.                 …………5分

(Ⅱ)解:设,

的导数为,则切线的方程

,得

因点在切线上,故

同理,

所以直线经过两点,

即直线方程为,即

代入,则,

所以

由抛物线定义得

所以

由题设知,,即

解得,从而

综上,存在点满足题意,点的坐标为

 或

                                              …………15分

 

【解析】略

 

练习册系列答案
相关题目

((本题满分15分)
某有奖销售将商品的售价提高120元后允许顾客有3次抽奖的机会,每次抽奖的方法是在已经设置并打开了程序的电脑上按“Enter”键,电脑将随机产生一个                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        1~6的整数数作为号码,若该号码是3的倍数则顾客获奖,每次中奖的奖金为100元,运用所学的知识说明这样的活动对商家是否有利。

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网