题目内容
若数列{an}满足| an+2 |
| an+1 |
| an+1 |
| an |
分析:由n=1,2,3,4,5,6,分别求出a1,a2,a3,a4,a5,a6,a7,a8,然后总结规律,求出a2009.
解答:解:
+
=3,a3=2,
a2=a3=2,
+
=3,a4=4,
+
=3,a5=4,
a4=a5=4,
+
=3,a6=8,
+
=3,a7=8.
a6=a7=8…
由此可知a2008=a2009=21004.
故答案为:21004.
| a3 |
| 2 |
| 2 |
| 1 |
a2=a3=2,
| a4 |
| 4 |
| 4 |
| 2 |
| a5 |
| 4 |
| 4 |
| 2 |
a4=a5=4,
| a6 |
| 8 |
| 8 |
| 4 |
| a7 |
| 8 |
| 8 |
| 8 |
a6=a7=8…
由此可知a2008=a2009=21004.
故答案为:21004.
点评:本题考查数列的递推式,解题时要认真审题,总结规律,仔细求解.
练习册系列答案
相关题目