题目内容
把直角坐标方程(x-3)2+y2=9化为极坐标方程.
【答案】分析:利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得.
解答:解:原方程可展开为x2-6x+9+y2=9,
x2-6x+y2=0→ρ2-6•ρcosθ=0
∴ρ=0或ρ=6cosθ
即ρ=6cosθ.
点评:本题考查点的极坐标和直角坐标的互化,能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化.
解答:解:原方程可展开为x2-6x+9+y2=9,
x2-6x+y2=0→ρ2-6•ρcosθ=0
∴ρ=0或ρ=6cosθ
即ρ=6cosθ.
点评:本题考查点的极坐标和直角坐标的互化,能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化.
练习册系列答案
相关题目