题目内容
设函数 f (x)=ax-lnx-3(a∈R),g(x)=xe1-x.
(Ⅰ)若函数g(x)的图象在点(0,0)处的切线也恰为f(x)图象的一条切线,求实数a的值;
(Ⅱ)是否存在实数a,对任意的x∈(0,e],都有唯一的x0∈[e-4,e],使得f(x0)=g(x)成立.若存在,求出a的取值范围;若不存在,请说明理由.
(Ⅰ)若函数g(x)的图象在点(0,0)处的切线也恰为f(x)图象的一条切线,求实数a的值;
(Ⅱ)是否存在实数a,对任意的x∈(0,e],都有唯一的x0∈[e-4,e],使得f(x0)=g(x)成立.若存在,求出a的取值范围;若不存在,请说明理由.
分析:(Ⅰ)先求g(x)的图象在(0,0)处的切线方程是y=ex,再利用函数g(x)的图象在点(0,0)处的切线也恰为f(x)图象的一条切线,可求a的值;
(Ⅱ)先确定函数g(x)的值域,令m=g(x),则原命题等价于对于任意m∈(0,1],都有唯一的x0∈[e-4,e],使得f(x0)=m成立,而f′(x)=a-
,x∈[e-4,e],
∈[e-1,e4],分类讨论,确定函数的单调性,求函数的最值,即可求得结论.
(Ⅱ)先确定函数g(x)的值域,令m=g(x),则原命题等价于对于任意m∈(0,1],都有唯一的x0∈[e-4,e],使得f(x0)=m成立,而f′(x)=a-
| 1 |
| x |
| 1 |
| x |
解答:解:(Ⅰ)∵g'(x)=(1-x)e1-x,∴g'(0)=e,∴g(x)的图象在(0,0)处的切线方程是y=ex;(2分)
设y=ex与f(x)的图象切于点(x0,y0),而f′(x)=a-
,∴a-
=e且ax0-lnx0-3=ex0,解得a=e2+e; (5分)
(Ⅱ)∵g'(x)=(1-x)e1-x,∴g(x)在(0,1]上单调递增,在[1,e]上单调递减,
且g(0)=0,g(1)=1,g(e)=e2-e∈(0,1),∴g(x)∈(0,1]; (8分)
若令m=g(x),则原命题等价于对于任意m∈(0,1],都有唯一的x0∈[e-4,e],使得f(x0)=m成立. (9分)
而f′(x)=a-
,x∈[e-4,e],
∈[e-1,e4]
①当a≤0时,f'(x)<0恒成立,所以f(x)在x∈[e-4,e]上单调递减,要满足条件,则必须有fmax=f(e-4)=ae-4+1≥1,且fmin=f(e)=ae-4≤0,无解,所以此时不存在满足条件的a;(10分)
②当0<a≤e-1,f'(x)<0恒成立,所以f(x)在x∈[e-4,e]上单调递减,要满足条件,则必须有fmax=f(e-4)=ae-4+1≥1,且fmin=f(e)=ae-4≤0,解得0≤a≤
,∴0<a≤e-1;(11分)
③当e-1<a<e4时,f(x)在区间(e-4,
)上单调递减,在(
,e)上单调递增,
又f(e-4)=ae-4+1>1,要满足条件,则fmin=f(
)≤f(e)=ae-4≤0,解得a≤
,∴e-4<a≤
;(12分)
④当a≥e4时,f'(x)>0恒成立,所以f(x)在x∈[e-4,e]上单调递增,
又fmin=f(e-4)=ae-4+1>1,所以此时不存在a满足条件; (13分)
综上有0<a≤
. (15分)
设y=ex与f(x)的图象切于点(x0,y0),而f′(x)=a-
| 1 |
| x |
| 1 |
| x0 |
(Ⅱ)∵g'(x)=(1-x)e1-x,∴g(x)在(0,1]上单调递增,在[1,e]上单调递减,
且g(0)=0,g(1)=1,g(e)=e2-e∈(0,1),∴g(x)∈(0,1]; (8分)
若令m=g(x),则原命题等价于对于任意m∈(0,1],都有唯一的x0∈[e-4,e],使得f(x0)=m成立. (9分)
而f′(x)=a-
| 1 |
| x |
| 1 |
| x |
①当a≤0时,f'(x)<0恒成立,所以f(x)在x∈[e-4,e]上单调递减,要满足条件,则必须有fmax=f(e-4)=ae-4+1≥1,且fmin=f(e)=ae-4≤0,无解,所以此时不存在满足条件的a;(10分)
②当0<a≤e-1,f'(x)<0恒成立,所以f(x)在x∈[e-4,e]上单调递减,要满足条件,则必须有fmax=f(e-4)=ae-4+1≥1,且fmin=f(e)=ae-4≤0,解得0≤a≤
| 4 |
| e |
③当e-1<a<e4时,f(x)在区间(e-4,
| 1 |
| a |
| 1 |
| a |
又f(e-4)=ae-4+1>1,要满足条件,则fmin=f(
| 1 |
| a |
| 4 |
| e |
| 4 |
| e |
④当a≥e4时,f'(x)>0恒成立,所以f(x)在x∈[e-4,e]上单调递增,
又fmin=f(e-4)=ae-4+1>1,所以此时不存在a满足条件; (13分)
综上有0<a≤
| 4 |
| e |
点评:本题考查导数知识的运用,考查导数的几何意义,考查函数的单调性与最值,考查分类讨论的数学思想,属于中档题.
练习册系列答案
相关题目