题目内容
已知函数f(x)的定义域为[-2,+∞),部分函数值如下表,f'(x)为f(x)的导函数,f'(x)的图象如图所示.如果实数a满足f(a)<1,则a的取值范围是
| x | -2 | 0 | 4 |
| f(x) | 1 | -1 | 1 |
- A.(-2,0)
- B.(0,4)
- C.(-2,4)
- D.[-2,4)
C
分析:由导函数的图象得到导函数的符号,利用导函数的符号与函数单调性的关系得到f(x)的单调性,结合函数的单调性,即可求a的取值范围.
解答:由导函数的图形知,x∈(-2,0)时,f′(x)<0;
x∈(0,+∞)时,f′(x)>0
∴f(x)在(-2,0)上单调递减,
在(0,+∞)上单调递增;
∵f(a)<1,
∴-2<a<4.
∴a的取值范围是(-2,4).
故选C.
点评:利用导函数求函数的单调性问题,应该先判断出导函数的符号,当导函数大于0对应函数单调递增;当导函数小于0,对应函数单调递减.
分析:由导函数的图象得到导函数的符号,利用导函数的符号与函数单调性的关系得到f(x)的单调性,结合函数的单调性,即可求a的取值范围.
解答:由导函数的图形知,x∈(-2,0)时,f′(x)<0;
x∈(0,+∞)时,f′(x)>0
∴f(x)在(-2,0)上单调递减,
在(0,+∞)上单调递增;
∵f(a)<1,
∴-2<a<4.
∴a的取值范围是(-2,4).
故选C.
点评:利用导函数求函数的单调性问题,应该先判断出导函数的符号,当导函数大于0对应函数单调递增;当导函数小于0,对应函数单调递减.
练习册系列答案
相关题目