ÌâÄ¿ÄÚÈÝ
ÒÑÖªÊýÁÐ{an}Âú×㣺a1=1£¬an=
|
£¨¢ñ£©Çóa3£¬a4£¬a5µÄÖµ£»
£¨¢ò£©Éèbn=a2n-1+1£¬n=1£¬2£¬3¡£¬ÇóÖ¤£ºÊýÁÐ{bn}ÊǵȱÈÊýÁУ¬²¢Çó³öÆäͨÏʽ£»
£¨¢ó£©¶ÔÈÎÒâµÄm¡Ý2£¬m¡ÊN*£¬ÔÚÊýÁÐ{an}ÖÐÊÇ·ñ´æÔÚÁ¬ÐøµÄ2mÏî¹¹³ÉµÈ²îÊýÁУ¿Èô´æÔÚ£¬Ð´³öÕâ2mÏ²¢Ö¤Ã÷Õâ2mÏî¹¹³ÉµÈ²îÊýÁУ»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
·ÖÎö£º£¨¢ñ£©ÓÉÌâÉèÌõ¼þ¿ÉÖªa2=1+2a1=3£¬a3=
+2a1=
£¬a4=1+2a2=7£¬a5=
+2a2=
£®
£¨¢ò£©ÓÉÌâÒâÖªbn+1=a2n+1£¬ÓÖa2n+1=(2a
+1)+1=2(a2n-1+1)=2bn£¬ËùÒÔbn+1=2bn£®ÔÙÓÉb1=a21-1+1=a1+1=2¿ÉÖªbn=2n£®
£¨¢ó£©¶ÔÈÎÒâµÄm¡Ý2£¬k¡ÊN*£¬ÔÚÊýÁÐ{an}ÖУ¬a2m£¬a2m+1£¬a2m+2£¬£¬a2m+2m-1ÕâÁ¬ÐøµÄ2mÏî¾Í¹¹³ÉÒ»¸öµÈ²îÊýÁУ®ÔÙÓ÷ÖÎö·¨½øÐÐÖ¤Ã÷£®
| 1 |
| 2 |
| 5 |
| 2 |
| 1 |
| 2 |
| 13 |
| 2 |
£¨¢ò£©ÓÉÌâÒâÖªbn+1=a2n+1£¬ÓÖa2n+1=(2a
| 2n |
| 2 |
£¨¢ó£©¶ÔÈÎÒâµÄm¡Ý2£¬k¡ÊN*£¬ÔÚÊýÁÐ{an}ÖУ¬a2m£¬a2m+1£¬a2m+2£¬£¬a2m+2m-1ÕâÁ¬ÐøµÄ2mÏî¾Í¹¹³ÉÒ»¸öµÈ²îÊýÁУ®ÔÙÓ÷ÖÎö·¨½øÐÐÖ¤Ã÷£®
½â´ð£º½â£º£¨¢ñ£©ÒòΪa1=1£¬ËùÒÔa2=1+2a1=3£¬a3=
+2a1=
£¬a4=1+2a2=7£¬a5=
+2a2=
£¨3·Ö£©
£¨¢ò£©ÓÉÌâÒ⣬¶ÔÓÚÈÎÒâµÄÕýÕûÊýn£¬bn=a2n-1+1£¬
ËùÒÔbn+1=a2n+1£¨4·Ö£©
ÓÖa2n+1=(2a
+1)+1=2(a2n-1+1)=2bn
ËùÒÔbn+1=2bn£¨6·Ö£©
ÓÖb1=a21-1+1=a1+1=2£¨7·Ö£©
ËùÒÔ{bn}ÊÇÊ×ÏîΪ2£¬¹«±ÈΪ2µÄµÈ±ÈÊýÁУ¬ËùÒÔbn=2n£¨8·Ö£©
£¨¢ó£©´æÔÚ£®ÊÂʵÉÏ£¬¶ÔÈÎÒâµÄm¡Ý2£¬k¡ÊN*£¬ÔÚÊýÁÐ{an}ÖУ¬
a2m£¬a2m+1£¬a2m+2£¬£¬a2m+2m-1ÕâÁ¬ÐøµÄ2mÏî¾Í¹¹³ÉÒ»¸öµÈ²îÊýÁУ¨10·Ö£©
ÎÒÃÇÏÈÀ´Ö¤Ã÷£º
¡°¶ÔÈÎÒâµÄn¡Ý2£¬n¡ÊN*£¬k¡Ê£¨0£¬2n-1£©£¬k¡ÊN*£¬ÓÐa2n-1+k=2n-1-
¡±
ÓÉ£¨II£©µÃbn=a2n-1+1=2n£¬ËùÒÔa2n-1=2n-1£®
µ±kÎªÆæÊýʱ£¬a2n-1+k=
+2a
=
+2a2n-2+
µ±kΪżÊýʱ£¬a2n-1+k=1+2a
=1+2a2n-2+
¼Çk1=
Òò´ËÒªÖ¤a2n-1+k=2n-1-
£¬Ö»ÐèÖ¤Ã÷a2n-2+k1=2n-1-1-
£¬
ÆäÖÐk1¡Ê£¨0£¬2n-2£©£¬k1¡ÊN*
£¨ÕâÊÇÒòΪÈôa2n-2+k1=2n-1-1-
£¬Ôòµ±k1=
ʱ£¬ÔòkÒ»¶¨ÊÇÆæÊý£¬
ÓÐa2n-1+k=
+2a
=
+2a2n-2+
=
+2(2n-1-1-
)=
+2(2n-1-1-
)=2n-1-
£»
µ±k1=
ʱ£¬ÔòkÒ»¶¨ÊÇżÊý£¬ÓÐa2n-1+k=1+2a
=1+2a2n-2+
=1+2(2n-1-1-
)=1+2(2n-1-1-
)=2n-1-
£©
Èç´ËµÝÍÆ£¬ÒªÖ¤a2n-2+k1=2n-1-1-
£¬Ö»ÒªÖ¤Ã÷a2n-3+k2=2n-2-1-
£¬
ÆäÖÐk2=
£¬k2¡Ê£¨0£¬2n-3£©£¬k2¡ÊN*
Èç´ËµÝÍÆÏÂÈ¥£¬ÎÒÃÇÖ»ÐèÖ¤Ã÷a21+kn-2=22-1-
£¬kn-2¡Ê£¨0£¬21£©£¬kn-2¡ÊN*
¼´a21+1=22-1-
=3-
=
£¬¼´a3=
£¬ÓÉ£¨I£©¿ÉµÃ£¬
ËùÒÔ¶Ôn¡Ý2£¬n¡ÊN*£¬k¡Ê£¨0£¬2n-1£©£¬k¡ÊN*£¬ÓÐa2n-1+k=2n-1-
£¬
¶ÔÈÎÒâµÄm¡Ý2£¬m¡ÊN*£¬a2m+i=2m+1-1-
£¬a2m+i+1=2m+1-1-
£¬
ÆäÖÐi¡Ê£¨0£¬2m-1£©£¬i¡ÊN*£¬
ËùÒÔa2m+i+1-a2m+i=-
ÓÖa2m=2m+1-1£¬a2m+1=2m+1-1-
£¬ËùÒÔa2m+1-a2m=-
ËùÒÔa2m£¬a2m+1£¬a2m+2£¬£¬a2m+2m-1ÕâÁ¬ÐøµÄ2mÏ
ÊÇÊ×ÏîΪa2m=2m+1-1£¬¹«²îΪ-
µÄµÈ²îÊýÁУ¨13·Ö£©
˵Ã÷£ºµ±m2£¾m1£¨ÆäÖÐm1¡Ý2£¬m1¡ÊN*£¬m2¡ÊN*£©Ê±£¬
ÒòΪa2m_£¬a2m_+1£¬a2m_+2£¬£¬a2m_+2m_-1¹¹³ÉÒ»¸öÏîÊýΪ2m2µÄµÈ²îÊýÁУ¬
ËùÒÔ´ÓÕâ¸öÊýÁÐÖÐÈÎÈ¡Á¬ÐøµÄ2m1ÏҲÊÇÒ»¸öÏîÊýΪ2m1£¬¹«²îΪ-
µÄµÈ²îÊýÁУ®
| 1 |
| 2 |
| 5 |
| 2 |
| 1 |
| 2 |
| 13 |
| 2 |
£¨¢ò£©ÓÉÌâÒ⣬¶ÔÓÚÈÎÒâµÄÕýÕûÊýn£¬bn=a2n-1+1£¬
ËùÒÔbn+1=a2n+1£¨4·Ö£©
ÓÖa2n+1=(2a
| 2n |
| 2 |
ËùÒÔbn+1=2bn£¨6·Ö£©
ÓÖb1=a21-1+1=a1+1=2£¨7·Ö£©
ËùÒÔ{bn}ÊÇÊ×ÏîΪ2£¬¹«±ÈΪ2µÄµÈ±ÈÊýÁУ¬ËùÒÔbn=2n£¨8·Ö£©
£¨¢ó£©´æÔÚ£®ÊÂʵÉÏ£¬¶ÔÈÎÒâµÄm¡Ý2£¬k¡ÊN*£¬ÔÚÊýÁÐ{an}ÖУ¬
a2m£¬a2m+1£¬a2m+2£¬£¬a2m+2m-1ÕâÁ¬ÐøµÄ2mÏî¾Í¹¹³ÉÒ»¸öµÈ²îÊýÁУ¨10·Ö£©
ÎÒÃÇÏÈÀ´Ö¤Ã÷£º
¡°¶ÔÈÎÒâµÄn¡Ý2£¬n¡ÊN*£¬k¡Ê£¨0£¬2n-1£©£¬k¡ÊN*£¬ÓÐa2n-1+k=2n-1-
| k |
| 2 |
ÓÉ£¨II£©µÃbn=a2n-1+1=2n£¬ËùÒÔa2n-1=2n-1£®
µ±kÎªÆæÊýʱ£¬a2n-1+k=
| 1 |
| 2 |
| 2n-1+k-1 |
| 2 |
| 1 |
| 2 |
| k-1 |
| 2 |
µ±kΪżÊýʱ£¬a2n-1+k=1+2a
| 2n-1+k |
| 2 |
| k |
| 2 |
¼Çk1=
|
Òò´ËÒªÖ¤a2n-1+k=2n-1-
| k |
| 2 |
| k1 |
| 2 |
ÆäÖÐk1¡Ê£¨0£¬2n-2£©£¬k1¡ÊN*
£¨ÕâÊÇÒòΪÈôa2n-2+k1=2n-1-1-
| k1 |
| 2 |
| k-1 |
| 2 |
ÓÐa2n-1+k=
| 1 |
| 2 |
| 2n-1+k-1 |
| 2 |
| 1 |
| 2 |
| k-1 |
| 2 |
=
| 1 |
| 2 |
| k1 |
| 2 |
| 1 |
| 2 |
| ||
| 2 |
| k |
| 2 |
µ±k1=
| k |
| 2 |
| 2n-1+k |
| 2 |
| k |
| 2 |
=1+2(2n-1-1-
| k1 |
| 2 |
| ||
| 2 |
| k |
| 2 |
Èç´ËµÝÍÆ£¬ÒªÖ¤a2n-2+k1=2n-1-1-
| k1 |
| 2 |
| k2 |
| 2 |
ÆäÖÐk2=
|
Èç´ËµÝÍÆÏÂÈ¥£¬ÎÒÃÇÖ»ÐèÖ¤Ã÷a21+kn-2=22-1-
| kn-2 |
| 2 |
¼´a21+1=22-1-
| 1 |
| 2 |
| 1 |
| 2 |
| 5 |
| 2 |
| 5 |
| 2 |
ËùÒÔ¶Ôn¡Ý2£¬n¡ÊN*£¬k¡Ê£¨0£¬2n-1£©£¬k¡ÊN*£¬ÓÐa2n-1+k=2n-1-
| k |
| 2 |
¶ÔÈÎÒâµÄm¡Ý2£¬m¡ÊN*£¬a2m+i=2m+1-1-
| i |
| 2 |
| i+1 |
| 2 |
ÆäÖÐi¡Ê£¨0£¬2m-1£©£¬i¡ÊN*£¬
ËùÒÔa2m+i+1-a2m+i=-
| 1 |
| 2 |
ÓÖa2m=2m+1-1£¬a2m+1=2m+1-1-
| 1 |
| 2 |
| 1 |
| 2 |
ËùÒÔa2m£¬a2m+1£¬a2m+2£¬£¬a2m+2m-1ÕâÁ¬ÐøµÄ2mÏ
ÊÇÊ×ÏîΪa2m=2m+1-1£¬¹«²îΪ-
| 1 |
| 2 |
˵Ã÷£ºµ±m2£¾m1£¨ÆäÖÐm1¡Ý2£¬m1¡ÊN*£¬m2¡ÊN*£©Ê±£¬
ÒòΪa2m_£¬a2m_+1£¬a2m_+2£¬£¬a2m_+2m_-1¹¹³ÉÒ»¸öÏîÊýΪ2m2µÄµÈ²îÊýÁУ¬
ËùÒÔ´ÓÕâ¸öÊýÁÐÖÐÈÎÈ¡Á¬ÐøµÄ2m1ÏҲÊÇÒ»¸öÏîÊýΪ2m1£¬¹«²îΪ-
| 1 |
| 2 |
µãÆÀ£º±¾Ì⿼²éÊýÁÐÐÔÖʵÄ×ÛºÏÓ¦Ó㬾ßÓÐÒ»¶¨µÄÄѶȣ¬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÅàÑø¼ÆËãÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿