ÌâÄ¿ÄÚÈÝ
ÒÑÖªÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßCµÄ²ÎÊý·½³ÌΪ
£¨tΪ·ÇÁã³£Êý£¬¦ÈΪ²ÎÊý£©£¬ÔÚ¼«×ø±êϵ£¨ÓëÖ±½Ç×ø±êϵxOyÈ¡ÏàͬµÄ³¤¶Èµ¥Î»£¬ÇÒÒÔÔµãOΪ¼«µã£¬ÒÔxÖáÕý°ëÖáΪ¼«ÖᣩÖУ¬Ö±ÏßlµÄ·½³ÌΪ¦Ñsin£¨¦È-
£©=2
£®
£¨¢ñ£©ÇóÇúÏßCµÄÆÕͨ·½³Ì²¢ËµÃ÷ÇúÏßµÄÐÎ×´£»
£¨¢ò£©ÊÇ·ñ´æÔÚʵÊýt£¬Ê¹µÃÖ±ÏßlÓëÇúÏßCÓÐÁ½¸ö²»Í¬µÄ¹«¹²µãA¡¢B£¬ÇÒ
•
=10£¨ÆäÖÐOÎª×ø±êԵ㣩£¿Èô´æÔÚ£¬ÇëÇó³ö£»·ñÔò£¬Çë˵Ã÷ÀíÓÉ£®
|
| ¦Ð |
| 4 |
| 2 |
£¨¢ñ£©ÇóÇúÏßCµÄÆÕͨ·½³Ì²¢ËµÃ÷ÇúÏßµÄÐÎ×´£»
£¨¢ò£©ÊÇ·ñ´æÔÚʵÊýt£¬Ê¹µÃÖ±ÏßlÓëÇúÏßCÓÐÁ½¸ö²»Í¬µÄ¹«¹²µãA¡¢B£¬ÇÒ
| OA |
| OB |
·ÖÎö£º£¨¢ñ£©ÓÉÓÚt¡Ù0£¬¿É½«ÇúÏßCµÄ·½³Ì»¯ÎªÆÕͨ·½³Ì£º
+y2=4£¬·Öt=¡À1ºÍt¡Ù¡À1ʱ£¬·Ö±ðÌÖÂÛÇúÏß
µÄÐÎ×´£®
£¨¢ò£©Ö±ÏßÓëÇÐÏß·½³ÌÁªÁ¢£¬ÀûÓÃΤ´ï¶¨Àí£¬½áºÏÏòÁ¿ÖªÊ¶£¬¿ÉÇóʵÊýtµÄÖµ£®
| x2 |
| t2 |
µÄÐÎ×´£®
£¨¢ò£©Ö±ÏßÓëÇÐÏß·½³ÌÁªÁ¢£¬ÀûÓÃΤ´ï¶¨Àí£¬½áºÏÏòÁ¿ÖªÊ¶£¬¿ÉÇóʵÊýtµÄÖµ£®
½â´ð£º½â£º£¨¢ñ£©¡ßt¡Ù0£¬¡à¿É½«ÇúÏßCµÄ·½³Ì»¯ÎªÆÕͨ·½³Ì£º
+y2=4£®¡£¨2·Ö£©
¢Ùt=¡À1ʱ£¬ÇúÏßCΪԲÐÄÔÚԵ㣬°ë¾¶Îª2µÄÔ²£» ¡£¨4·Ö£©
¢Úµ±t¡Ù¡À1ʱ£¬ÇúÏßCΪÖÐÐÄÔÚÔµãµÄÍÖÔ²£®¡£¨6·Ö£©
£¨¢ò£©Ö±ÏßlµÄÆÕͨ·½³ÌΪ£ºx-y+4=0£®¡£¨8·Ö£©
ÁªÁ¢Ö±ÏßÓëÇúÏߵķ½³Ì£¬ÏûyµÃ
+£¨x+4£©2=4£¬»¯¼òµÃ£¨1+t2£©x2+8t2x+12t2=0£®
ÈôÖ±ÏßlÓëÇúÏßCÓÐÁ½¸ö²»Í¬µÄ¹«¹²µã£¬Ôò¡÷=64t4-4£¨1+t2£©•12t2£¾0£¬½âµÃt2£¾3
ÓÖx1+x2=-
£¬x1x2=
£¬¡£¨ ¡£¨10·Ö£©
¹Ê
•
=x1x2+y1y2=x1x2+£¨x1+4£©£¨x2+4£©=2x1x2+4£¨x1+x2£©+16=10£®
½âµÃt2=3Óët2£¾3Ïàì¶Ü£® ¹Ê²»´æÔÚÂú×ãÌâÒâµÄʵÊýt£®¡£¨12·Ö£©
| x2 |
| t2 |
¢Ùt=¡À1ʱ£¬ÇúÏßCΪԲÐÄÔÚԵ㣬°ë¾¶Îª2µÄÔ²£» ¡£¨4·Ö£©
¢Úµ±t¡Ù¡À1ʱ£¬ÇúÏßCΪÖÐÐÄÔÚÔµãµÄÍÖÔ²£®¡£¨6·Ö£©
£¨¢ò£©Ö±ÏßlµÄÆÕͨ·½³ÌΪ£ºx-y+4=0£®¡£¨8·Ö£©
ÁªÁ¢Ö±ÏßÓëÇúÏߵķ½³Ì£¬ÏûyµÃ
| x2 |
| t2 |
ÈôÖ±ÏßlÓëÇúÏßCÓÐÁ½¸ö²»Í¬µÄ¹«¹²µã£¬Ôò¡÷=64t4-4£¨1+t2£©•12t2£¾0£¬½âµÃt2£¾3
ÓÖx1+x2=-
| 8t2 |
| 1+t2 |
| 12t2 |
| 1+t2 |
¹Ê
| OA |
| OB |
½âµÃt2=3Óët2£¾3Ïàì¶Ü£® ¹Ê²»´æÔÚÂú×ãÌâÒâµÄʵÊýt£®¡£¨12·Ö£©
µãÆÀ£º±¾Ì⿼²éÖ±ÏߵIJÎÊý·½³Ì£¬¿¼²éÖ±ÏßÓëÇúÏßµÄλÖùØÏµ£¬¿¼²éÏòÁ¿ÖªÊ¶µÄÔËÓ㬿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿