题目内容
设数列{an}的前n项和为Sn,已知Sn=2an-2n+1(n∈N*).
(1)求数列{an}的通项公式;
(2)设bn=log
2,数列{bn}的前n项和为Bn,若存在整数m,使对任意n∈N*且n≥2,都有B3n-Bn>
成立,求m的最大值;
(3)令cn=(-1)n+1log
2,数列{cn}的前n项和为Tn,求证:当n∈N*且n≥2时,T2n<
.
(1)求数列{an}的通项公式;
(2)设bn=log
| an |
| n+1 |
| m |
| 20 |
(3)令cn=(-1)n+1log
| an |
| n+1 |
| ||
| 2 |
分析:(1)由条件可得an=2an-2an-1-2n,再化为
-
=1,可得数列{
}是公差为1的等差数列,求出a1的值,即可求得数列{an}的通项公式.
(2)因为bn=log
2=log2n2=
,则B3n-Bn=
+
+…+
,令f(n)=
+
+…+
,化简 f(n+1)-f(n),再用放缩法证明它大于零,可得
数列{f(n)}为递增数列,由此求得它的最小值
,由
<
求得m的最大值.
(3)因为cn=(-1)n+1•
,则当n≥2时,化简T2n为
+
+…+
,再通过证明当x>0时,ln(x+1)>
,来证明
+
+…+
<
.
| an |
| 2n |
| an-1 |
| 2n-1 |
| an |
| 2n |
(2)因为bn=log
| an |
| n+1 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 3n |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 3n |
数列{f(n)}为递增数列,由此求得它的最小值
| 19 |
| 20 |
| m |
| 20 |
| 19 |
| 20 |
(3)因为cn=(-1)n+1•
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2n |
| x |
| x+1 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2n |
| ||
| 2 |
解答:(1)由Sn=2an-2n+1,得Sn-1=2an-1-2n(n≥2).
两式相减,得an=2an-2an-1-2n,即an-2an-1=2n(n≥2).
于是
-
=1,所以数列{
}是公差为1的等差数列.(2分)
又S1=2a1-22,所以a1=4.
所以
=2+(n-1)=n+1,故an=(n+1)•2n.(4分)
(2)因为bn=log
2=log2n2=
,则B3n-Bn=
+
+…+
.
令f(n)=
+
+…+
,则f(n+1)=
+
+…+
+
+
+
.
所以f(n+1)-f(n)=
+
+
-
=
+
-
>
+
-
=0.
即f(n+1)>f(n),所以数列{f(n)}为递增数列.(7分)
所以当n≥2时,f(n)的最小值为f(2)=
+
+
+
=
.
据题意,
<
,即m<19.又m为整数,故m的最大值为18.(8分)
(3)因为cn=(-1)n+1•
,则当n≥2时,T2n=1-
+
-
+…+
-
=(1+
+
+…+
)-2(
+
+…+
)=
+
+…+
.(9分)
下面证
+
+…+
<
先证一个不等式,当x>0时,ln(x+1)>
令g(x)=ln(x+1)-
(x>0),则g′(x)=
-
=
>0,
∴g(x)在(0,+∞)时单调递增,g(x)>g(0)=0,即当x>0时,ln(x+1)>
令x=
,ln
>
⇒ln(n+1)-lnn>
,ln(n+2)-ln(n+1)>
,ln(n+3)-ln(n+2)>
,…,ln(2n)-ln(2n-1)>
以上n个式相加,即有ln(2n)-lnn>
+
+…+
∴
+
+…+
<ln(2n)-lnn=ln2<
. (14分)
两式相减,得an=2an-2an-1-2n,即an-2an-1=2n(n≥2).
于是
| an |
| 2n |
| an-1 |
| 2n-1 |
| an |
| 2n |
又S1=2a1-22,所以a1=4.
所以
| an |
| 2n |
(2)因为bn=log
| an |
| n+1 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 3n |
令f(n)=
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 3n |
| 1 |
| n+2 |
| 1 |
| n+3 |
| 1 |
| 3n |
| 1 |
| 3n+1 |
| 1 |
| 3n+2 |
| 1 |
| 3n+3 |
所以f(n+1)-f(n)=
| 1 |
| 3n+1 |
| 1 |
| 3n+2 |
| 1 |
| 3n+3 |
| 1 |
| n+1 |
| 1 |
| 3n+1 |
| 1 |
| 3n+2 |
| 2 |
| 3n+3 |
| 1 |
| 3n+3 |
| 1 |
| 3n+3 |
| 2 |
| 3n+3 |
即f(n+1)>f(n),所以数列{f(n)}为递增数列.(7分)
所以当n≥2时,f(n)的最小值为f(2)=
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 6 |
| 19 |
| 20 |
据题意,
| m |
| 20 |
| 19 |
| 20 |
(3)因为cn=(-1)n+1•
| 1 |
| n |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2n-1 |
| 1 |
| 2n |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2n |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2n |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2n |
下面证
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2n |
| ||
| 2 |
先证一个不等式,当x>0时,ln(x+1)>
| x |
| x+1 |
令g(x)=ln(x+1)-
| x |
| x+1 |
| 1 |
| x+1 |
| 1 |
| (x+1)2 |
| x |
| (x+1)2 |
∴g(x)在(0,+∞)时单调递增,g(x)>g(0)=0,即当x>0时,ln(x+1)>
| x |
| x+1 |
令x=
| 1 |
| n |
| n+1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| n+3 |
| 1 |
| 2n |
以上n个式相加,即有ln(2n)-lnn>
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2n |
∴
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2n |
| ||
| 2 |
点评:本题主要考查等差关系的确定,数列与不等式综合,数学归纳法的应用,属于难题.
练习册系列答案
相关题目