题目内容
已知函数f(x)=
sin(2x-
)+2sin2(x-
) (x∈R).
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)若f(x)=1-
且x∈[-
,
],求x的值;
(Ⅲ)求函数f(x)的单调递增区间.
| 3 |
| π |
| 6 |
| π |
| 12 |
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)若f(x)=1-
| 2 |
| π |
| 4 |
| π |
| 4 |
(Ⅲ)求函数f(x)的单调递增区间.
(Ⅰ)∵f(x)=
sin(2x-
)+2sin2(x-
)
=
sin(2x-
)+1-cos(2x-
)
=2sin(2x-
)+1,
∴f(x)的最小正周期T=
=π;
(Ⅱ)∵f(x)=2sin(2x-
)+1=1-
,
∴sin(2x-
)=-
,
∵x∈[-
,
],
∴2x-
∈[-
,
],
∴2x-
=-
或2x-
=-
,
∴x=-
或x=
.
(Ⅲ)由2kπ-
≤2x-
≤2kπ+
得:kπ-
≤x≤kπ+
,k∈Z.
∴函数f(x)的单调递增区间为[kπ-
,kπ+
](k∈Z).
| 3 |
| π |
| 6 |
| π |
| 12 |
=
| 3 |
| π |
| 6 |
| π |
| 6 |
=2sin(2x-
| π |
| 3 |
∴f(x)的最小正周期T=
| 2π |
| 2 |
(Ⅱ)∵f(x)=2sin(2x-
| π |
| 3 |
| 2 |
∴sin(2x-
| π |
| 3 |
| ||
| 2 |
∵x∈[-
| π |
| 4 |
| π |
| 4 |
∴2x-
| π |
| 3 |
| 5π |
| 6 |
| π |
| 6 |
∴2x-
| π |
| 3 |
| 3π |
| 4 |
| π |
| 3 |
| π |
| 4 |
∴x=-
| 5π |
| 24 |
| π |
| 24 |
(Ⅲ)由2kπ-
| π |
| 2 |
| π |
| 3 |
| π |
| 2 |
| π |
| 12 |
| 5π |
| 12 |
∴函数f(x)的单调递增区间为[kπ-
| π |
| 12 |
| 5π |
| 12 |
练习册系列答案
相关题目
已知函数f(x)=3•2x-1,则当x∈N时,数列{f(n+1)-f(n)}( )
| A、是等比数列 | B、是等差数列 | C、从第2项起是等比数列 | D、是常数列 |