题目内容
已知数列{an}满足a1=2a,an=2a-| a2 |
| an-1 |
| 1 |
| an-a |
(1)求证:数列{bn}是等差数列;
(2)求数列{an}的通项公式.
分析:(1)把的an递推式代入bn,进而求得bn-bn-1为常数,判断出数列{bn}是公差为
的等差数列.
(2)利用(1)可求得bn,进而根据bn=
求得an.
| 1 |
| a |
(2)利用(1)可求得bn,进而根据bn=
| 1 |
| an-a |
解答:解:∵(1)an=2a-
(n≥2),
∴bn=
=
=
(n≥2),
∴bn-bn-1=
-
=
(n≥2),
∴数列{bn}是公差为
的等差数列.
(2)∵b1=
=
,
故由(1)得:bn=
+(n-1)×
=
.
即:
=
,
得:an=a(1+
).
| a2 |
| an-1 |
∴bn=
| 1 |
| an-a |
| 1 | ||
a-
|
| an-1 |
| a(an-1-a) |
∴bn-bn-1=
| an-1 |
| a(an-1-a) |
| 1 |
| an-1-a |
| 1 |
| a |
∴数列{bn}是公差为
| 1 |
| a |
(2)∵b1=
| 1 |
| a1-a |
| 1 |
| a |
故由(1)得:bn=
| 1 |
| a |
| 1 |
| a |
| n |
| a |
即:
| 1 |
| an-a |
| n |
| a |
得:an=a(1+
| 1 |
| n |
点评:本题主要考查了等差关系的确定.考查了学生对等差数列的定义的理解.
练习册系列答案
相关题目