题目内容
(2012•张掖模拟)已知{bn}是公比大于1的等比数列,它的前n项和为Sn,若S3=14,b1+8,3b2,b3+6成等差数列,且a1=1,an=bn•(
+
+…+
)(n≥2).
(1)求bn;
(2)证明:(1+
)(1+
)…(1+
)<e3(其中e为自然对数的底数).
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn-1 |
(1)求bn;
(2)证明:(1+
| 1 |
| a1 |
| 2 |
| a2 |
| n |
| an |
分析:(1)利用S3=14,b1+8,3b2,b3+6成等差数列,求出公比与首项,即可得出通项公式;
(2)由题意,要证明:(1+
)(1+
)…(1+
)<e3,只需证ln2+ln(1+
)+…+ln(1+
)<3.令f(x)=ln(1+x)-x(x>0),证明ln(1+x)<x,进而只要证明ln2+ln(1+
)+…+ln(1+
)<ln2+
+…+
,利用错位相减法求和,即可得到结论.
(2)由题意,要证明:(1+
| 1 |
| a1 |
| 2 |
| a2 |
| n |
| an |
| 2 |
| 22-2 |
| n |
| 2n-2 |
| 2 |
| 22-2 |
| n |
| 2n-2 |
| 2 |
| 2 |
| n |
| 2n-1 |
解答:(1)解:∵S3=14,b1+8,3b2,b3+6成等差数列,
∴
∴2q2-5q+2=0
∴q=2或q=
∵q>1
∴q=2,∴b1=2
∴bn=2n;
(2)证明:当n≥2时,an=bn•(
+
+…+
)=2n-2
∴1+
=1+
.
要证明:(1+
)(1+
)…(1+
)<e3,
只需证ln2+ln(1+
)+…+ln(1+
)<3.
令f(x)=ln(1+x)-x(x>0)
则f′(x)=
-1=
<0,∴f(x)在区间(0,+∞)上单调递减,
∵f(0)=0,
∴当x>0时,f(x)<0,即ln(1+x)<x.
从而当n≥2时,ln(1+
)<
<
∴ln2+ln(1+
)+…+ln(1+
)<ln2+
+…+
令Tn=
+
+…+
①
∴
Tn=
+
+…+
②
①-②得
Tn=1+
+…+
-
=
-
∴Tn=3-
<3
∴(1+
)(1+
)…(1+
)<e3.
∴
|
∴2q2-5q+2=0
∴q=2或q=
| 1 |
| 2 |
∵q>1
∴q=2,∴b1=2
∴bn=2n;
(2)证明:当n≥2时,an=bn•(
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn-1 |
∴1+
| n |
| an |
| n |
| 2n-2 |
要证明:(1+
| 1 |
| a1 |
| 2 |
| a2 |
| n |
| an |
只需证ln2+ln(1+
| 2 |
| 22-2 |
| n |
| 2n-2 |
令f(x)=ln(1+x)-x(x>0)
则f′(x)=
| 1 |
| 1+x |
| -x |
| 1+x |
∵f(0)=0,
∴当x>0时,f(x)<0,即ln(1+x)<x.
从而当n≥2时,ln(1+
| n |
| 2n-2 |
| n |
| 2n-2 |
| n |
| 2n-1 |
∴ln2+ln(1+
| 2 |
| 22-2 |
| n |
| 2n-2 |
| 2 |
| 2 |
| n |
| 2n-1 |
令Tn=
| 2 |
| 2 |
| 3 |
| 22 |
| n |
| 2n-1 |
∴
| 1 |
| 2 |
| 2 |
| 22 |
| 3 |
| 23 |
| n |
| 2n |
①-②得
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n-1 |
| n |
| 2n |
| 3 |
| 2 |
| n+2 |
| 2n |
∴Tn=3-
| n+2 |
| 2n-1 |
∴(1+
| 1 |
| a1 |
| 2 |
| a2 |
| n |
| an |
点评:本题考查等差数列与等比数列的综合应用,数列通项公式的求法,考查不等式的证明,考查分析问题解决问题的能力,属于中档题.
练习册系列答案
相关题目