题目内容



解:(Ⅰ)当时,函数,则.

     得:

变化时,的变化情况如下表:

+

0

0

+

极大

极小

   因此,当时,有极大值,并且

时,有极小值,并且.--------------------------------4分

(Ⅱ)由,则

;解

所有是减函数,在是增函数,

对于任意的,不等式恒成立,则有即可.

即不等式对于任意的恒成立.--------------------------------6分

(1)当时,,解;解,

          所以是增函数,在是减函数,

          所以符合题意.

    

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网