题目内容

已知数列 {an}和{bn}满足 a1=m,an+1an+n,bn=an-
2n
3
+
4
9
,{bn}的前n项和为Tn
(Ⅰ)当m=1时,求证:对于任意的实数λ,{an}一定不是等差数列;
(Ⅱ) 当λ=-
1
2
时,试判断{bn}是否为等比数列;
(Ⅲ)在(Ⅱ)条件下,若1≤Tn≤2对任意的n∈N*恒成立,求实数m的范围.
分析:(Ⅰ)把m=1代入an+1=λan+n,求出a1,a2和a3,假设是等差数列,推出矛盾,从而进行证明;
(Ⅱ)把λ=-
1
2
代入an+1an+n,bn=an-
2n
3
+
4
9
,对bn进行化简,对于首项要进行讨论,从而进行判断;
(Ⅲ)在(Ⅱ)条件下,若1≤Tn≤2对任意的n∈N*恒成立,求出Tn的最大值和最小值即可,对于n的奇偶性要进行讨论,求出Tn的范围,从而求解;
解答:解:(Ⅰ)当m=1时,a1=1.a2=λ+1,a3=λ(λ+1)+2=λ2+λ+2…(2分)
假设{an}是等差数列,由a1+a3=2a2,得λ2+λ+3=2(λ+1)
即λ2-λ+1=0,△=-3<0,方程无实根.
故对于任意的实数λ,
{an}一定不是等差数列…(5分)
(Ⅱ)当λ=-
1
2
时,an+1=-
1
2
an+n,bn=an-
2n
3
+
4
9
bn+1=an+1-
2(n+1)
3
+
4
9
=(-
1
2
an+n)-
2(n+1)
3
+
4
9
=-
1
2
an+
n
3
-
2
9

=-
1
2
(an-
2n
3
+
4
9
)=-
1
2
bn
b1=m-
2
3
+
4
9
=m-
2
9

当m≠
2
9
时,{bn}是以m-
2
9
为首项,-
1
2
为公比的等比数列
…(9分)
当m=
2
9
时,{bn}不是等比数列
…(10分)
(Ⅲ)当m=
2
9
Tn=0
,不成立…(11分)
m≠
2
9
Tn=
2
3
(m-
2
9
)[1-(-
1
2
)n]

当n为奇数时[1-(-
1
2
)n]∈(1,
3
2
]

当n为偶数[1-(-
1
2
)n]∈[
3
4
,1)
…(14分)
∵1≤Tn≤2对任意的n∈N*恒成立,
2
3
(m-
2
9
3
2
≤2
2
3
(m-
2
9
3
4
≥1
解得m=
20
9

从而求得m=
20
9
…(16分)
点评:此题主要考查等差数列前n项和公式及其应用,第三问需要讨论n的奇偶性,有一定的难度,解题过程中用到了转化的思想,是一道中档题;
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网