题目内容
已知数列{an}中a1=1,a2=
,a3=
,a4=
,…则数列{an}的前n项的和Sn=( )
| 1 |
| 1+2 |
| 1 |
| 1+2+3 |
| 1 |
| 1+2+3+4 |
分析:可得an=
=2(
-
),裂项相消可求和.
| 1 |
| 1+2+3+…+n |
| 1 |
| n |
| 1 |
| n+1 |
解答:解:由题意可得an=
=
=
=2(
-
),
故Sn=2(1-
+
-
+
-
+…+
-
)
=2(1-
)=
故选C
| 1 |
| 1+2+3+…+n |
| 1 | ||
|
| 2 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
故Sn=2(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
=2(1-
| 1 |
| n+1 |
| 2n |
| n+1 |
故选C
点评:本题考查数列的求和,涉及等差数列的求和公式和裂项相消法求和,属中档题.
练习册系列答案
相关题目