题目内容

已知圆C:x2+y2=1,点P(x0,y0)在直线x-y-2=0上,O为坐标原点,若圆C上存在一点Q,使∠OPQ=30°,则x0的取值范围是
[0,2]
[0,2]
分析:圆O外有一点P,圆上有一动点Q,∠OPQ在PQ与圆相切时取得最大值.如果OP变长,那么∠OPQ可以获得的最大值将变小.因为sin∠OPQ=$\frac{QO}{PO}$,QO为定值,即半径,PO变大,则sin∠OPQ变小,由于∠OPQ∈(0,$\frac{π}{2}$),所以∠OPQ也随之变小.可以得知,当∠OPQ=30°,且PQ与圆相切时,PO=2,而当PO>2时,Q在圆上任意移动,∠OPQ<30°恒成立.因此满足PO≤2,就能保证一定存在点Q,使得∠OPQ=30°,否则,这样的点Q是不存在的;接下来进行计算:根据两点间的距离公式表示出OP的长,再把P的坐标代入已知的直线方程中,用y0表示出x0,代入到表示出OP的长中,根据PO2≤4列出关于y0的不等式,求出不等式的解集即可得到y0的范围,进而求出x0的范围.
解答:解:由分析可得:PO2=x02+y02
又因为P在直线x-y-2=0上,所以x0=y0+2,
由分析可知PO≤2,所以PO2≤4,即2y02+4y0+4≤4,变形得:y0(y0+2)≤0,解得:-2≤y0≤0,
所以0≤y0+2≤2,即0≤x0≤2,则x0的取值范围是[0,2].
故答案为:[0,2]
点评:此题考查了点与圆的位置关系,以及函数的定义域及其求法.解题的关键是结合图形,利用几何知识,判断出PO≤2,从而得到不等式求出参数的取值范围.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网