题目内容
(2012•资阳三模)设数列{an}的前n项和为Sn,且Sn=2an-2n+1.
(I)求证:(
)是等差数列,并求出数列的{an}通项公式;
(II)数列{bn}满足bn=log2
求使不等式(1+
)(1+
)…(1+
)≥m•
对任意正整数n都成立的最大实数m的值.
(I)求证:(
| an |
| 2n |
(II)数列{bn}满足bn=log2
| an |
| n+1 |
| 1 |
| b1 |
| 1 |
| b3 |
| 1 |
| b2n-1 |
| b2n+1 |
分析:(Ⅰ)利用Sn=2an-2n+1,与Sn-1=2an-1-2n(n≥2).推出an-2an-1=2n (n≥2),然后证明数列{
}是公差为1的等差数列,即可求出数列的通项公式.
(Ⅱ)利用bn=log2
,求出表达式,化简不等式(1+
)(1+
)…(1+
)≥m•
,通过令f(n)=
,比较
的大小,说明f(n)单调递增,然后求出实数m的最大值.
| an |
| 2n |
(Ⅱ)利用bn=log2
| an |
| n+1 |
| 1 |
| b1 |
| 1 |
| b3 |
| 1 |
| b2n-1 |
| b2n+1 |
(1+1)(1+
| ||||
|
| f(n+1) |
| f(n) |
解答:解:(Ⅰ)由Sn=2an-2n+1,得Sn-1=2an-1-2n(n≥2).
两式相减,得an=2an-2an-1-2n,即an-2an-1=2n (n≥2),(2分)
∴
-
=1,故数列{
}是公差为1的等差数列,(4分)
又S1=2a1-22.则a1=4,∴
=2+(n-1)=n+1,
故an=(n+1)+2n.(6分)
(Ⅱ)∵bn=log2
=
=n,(7分)
不等式(1+
)(1+
)…(1+
)≥m•
,
即(1+1)(1+
)…(1+
)≥m•
恒成立,
也即m≤
对任意正整数n都成立.(8分)
令f(n)=
,知f(n+1)=
,
∵
=
=
>1,
∴当n∈N*时,f(n)单调递增,(10分)
∴f(n)≥f(1)=
,则m≤
,故实数m的最大值为
.(12分)
两式相减,得an=2an-2an-1-2n,即an-2an-1=2n (n≥2),(2分)
∴
| an |
| 2n |
| an-1 |
| 2n-1 |
| an |
| 2n |
又S1=2a1-22.则a1=4,∴
| an |
| 2n |
故an=(n+1)+2n.(6分)
(Ⅱ)∵bn=log2
| an |
| n+1 |
| log | 2n 2 |
不等式(1+
| 1 |
| b1 |
| 1 |
| b3 |
| 1 |
| b2n-1 |
| b2n+1 |
即(1+1)(1+
| 1 |
| 3 |
| 1 |
| 2n-1 |
| 2n+1 |
也即m≤
(1+1)(1+
| ||||
|
令f(n)=
(1+1)(1+
| ||||
|
(1+1)(1+
| ||||||
|
∵
| f(n+1) |
| f(n) |
| 2n+2 | ||||
|
| ||
|
∴当n∈N*时,f(n)单调递增,(10分)
∴f(n)≥f(1)=
2
| ||
| 3 |
2
| ||
| 3 |
2
| ||
| 3 |
点评:本题考查等差关系的确定,数列求和的应用,考查分析问题解决问题的能力,转化思想的应用.
练习册系列答案
相关题目