题目内容
容器A内装有6升质量分数为20%的盐水溶液,容器B内装有4升质量分数为5%的盐水溶液,先将A内的盐水倒1升进入B内,再将B内的盐水倒1升进入A内,称为一次操作;这样反复操作n次,A、B容器内的盐水的质量分数分别为an,bn,
( I)问至少操作多少次,A、B两容器内的盐水浓度之差小于1%?(取lg2=0.3010,lg3=0.4771)
(Ⅱ)求an、bn的表达式,并求
an与
bn的值.
( I)问至少操作多少次,A、B两容器内的盐水浓度之差小于1%?(取lg2=0.3010,lg3=0.4771)
(Ⅱ)求an、bn的表达式,并求
| lim |
| n→∞ |
| lim |
| n→∞ |
( I)∵b1=
(
+4×
)=
,a1=
(
+5×
)=
;
bn+1=
,an+1=
(5an+bn+1)=
;
∴an+1-bn+1=
(an-bn),
∴{an-bn}是q=
的等比数列,
∴an-bn=
×(
)n-1<
,
∴n-1>log
=
≈5.7,
∴n≥7,故至少操作7次;
(Ⅱ)∵bn+1=
[bn+
×(
)n-1+4bn],
∴bn+1-bn=
×(
)n
∴bn=b1+(b2-b1)+(b3-b2)+…+(bn-bn-1)=
+
×[
+(
)2+…+(
)n-1]=-
×(
)n+
,
而an=bn+
×(
)n-1=
×(
)n+
;
∴
an=
bn=
.
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 20 |
| 2 |
| 25 |
| 1 |
| 6 |
| 2 |
| 25 |
| 1 |
| 5 |
| 9 |
| 50 |
bn+1=
| an+4bn |
| 5 |
| 1 |
| 6 |
| 26an+4bn |
| 30 |
∴an+1-bn+1=
| 2 |
| 3 |
∴{an-bn}是q=
| 2 |
| 3 |
∴an-bn=
| 1 |
| 10 |
| 2 |
| 3 |
| 1 |
| 100 |
∴n-1>log
| 2 |
| 3 |
| 1 |
| 10 |
| 1 |
| lg3-lg2 |
∴n≥7,故至少操作7次;
(Ⅱ)∵bn+1=
| 1 |
| 5 |
| 1 |
| 10 |
| 2 |
| 3 |
∴bn+1-bn=
| 3 |
| 100 |
| 2 |
| 3 |
∴bn=b1+(b2-b1)+(b3-b2)+…+(bn-bn-1)=
| 2 |
| 25 |
| 3 |
| 100 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 3 |
| 100 |
| 2 |
| 3 |
| 7 |
| 50 |
而an=bn+
| 1 |
| 10 |
| 2 |
| 3 |
| 3 |
| 50 |
| 2 |
| 3 |
| 7 |
| 50 |
∴
| lim |
| n→∞ |
| lim |
| n→∞ |
| 7 |
| 50 |
.
练习册系列答案
相关题目