题目内容
设I=R,已知f(x)=lg(x2-3x+2)的定义域为F,函数g(x)=lg(x-1)+lg(x-2)的定义域为G,那么G∪CIF 等于( )
分析:由f(x)=lg(x2-3x+2)的定义域为F,函数g(x)=lg(x-1)+lg(x-2)的定义域为G,先求出F和G,再由I=R,求出CIF,由此能求出GUCIF.
解答:解:∵f(x)=lg(x2-3x+2)的定义域为F,
函数g(x)=lg(x-1)+lg(x-2)的定义域为G,
∴F={x|x2-3x+2>0}={x|x>2,或x<1},
G={x|
}={x|x>2},
∵I=R,
∴CIF={x|1≤x≤2},
∴G∪CIF={x|x≥1}.
故选C.
函数g(x)=lg(x-1)+lg(x-2)的定义域为G,
∴F={x|x2-3x+2>0}={x|x>2,或x<1},
G={x|
|
∵I=R,
∴CIF={x|1≤x≤2},
∴G∪CIF={x|x≥1}.
故选C.
点评:本题考查函数的定义域及其应用,是基础题.解题时要认真审题,仔细解答,注意集合知识的灵活运用.
练习册系列答案
相关题目