题目内容
已知数列{an}的前n项和为Sn,a1=1,Sn+1=4an+2(n≥1,n∈N)
(1)设bn=an+1-2an,求bn;
(2)设cn=
,求数列{cn}的前n项和Tn.
(1)设bn=an+1-2an,求bn;
(2)设cn=
| 3n+6 | bn |
分析:(1)由Sn+1=4an+2(n≥1,n∈N),得Sn=4an-1+2(n≥2,n∈N),两式相减可得递推式,通过变形可得bn的递推式,由递推式可判断{bn}为等比数列,从而可得bn;
(2)由(1)可求得cn,利用错位相减法可求得Tn.
(2)由(1)可求得cn,利用错位相减法可求得Tn.
解答:解:(1)由Sn+1=4an+2(n≥1,n∈N),得Sn=4an-1+2(n≥2,n∈N),
作差有an+1=4an-4an-1(n≥2),
整理得an+1-2an=2(an-2an-1)(n≥2),即bn=2bn-1,
∴{bn}是以b1=a2-2a1为首项2为公比的等比数列,
由a1=1,Sn+1=4an+2(n≥1,n∈N)求得a2=5,
∴b1=a2-2a1=3,∴bn=3•2n-1;
(2)由(1)得,cn=
=
=
,
则Tn=3+
+
+…+
①,
Tn=
+
+
+…+
②,
①-②得,
Tn=3+
+
+
+…+
-
=3+
-
=3+1-
-
=4-
,
故Tn=4-
.
作差有an+1=4an-4an-1(n≥2),
整理得an+1-2an=2(an-2an-1)(n≥2),即bn=2bn-1,
∴{bn}是以b1=a2-2a1为首项2为公比的等比数列,
由a1=1,Sn+1=4an+2(n≥1,n∈N)求得a2=5,
∴b1=a2-2a1=3,∴bn=3•2n-1;
(2)由(1)得,cn=
| 3n+6 |
| bn |
| 3n+6 |
| 3•2n-1 |
| n+2 |
| 2n-1 |
则Tn=3+
| 4 |
| 2 |
| 5 |
| 22 |
| n+2 |
| 2n-1 |
| 1 |
| 2 |
| 3 |
| 2 |
| 4 |
| 22 |
| 5 |
| 23 |
| n+2 |
| 2n |
①-②得,
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n-1 |
| n+2 |
| 2n |
=3+
| ||||
1-
|
| n+2 |
| 2n |
=3+1-
| 1 |
| 2n-1 |
| n+2 |
| 2n |
=4-
| n+4 |
| 2n |
故Tn=4-
| n+4 |
| 2n |
点评:本题考查等比数列的通项公式、由递推式求数列的通项,考查数列求和,错位相减法对数列求和是高考考查的重点内容,要熟练掌握.
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |