题目内容
求函数y=cos2x+sinxcosx的值域.
y=cos2x+sinxcosx=
+
sin2x=
(sin2x+cos2x)+
=
(
sin2x+
cos2x)+
=
sin(2x+
)+
,因为sin(2x+
)∈[-1,1]
所以原函数的值域为[
-
,
+
]
| 1+cos2x |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=
| ||
| 2 |
| ||
| 2 |
| ||
| 2 |
| 1 |
| 2 |
| ||
| 2 |
| π |
| 4 |
| 1 |
| 2 |
| π |
| 4 |
所以原函数的值域为[
| 1 |
| 2 |
| ||
| 2 |
| 1 |
| 2 |
| ||
| 2 |
练习册系列答案
相关题目