题目内容
已知函数f(x)=log2(ax-4bx+6),满足f(1)=1,f(2)=log26,a,b为正实数.则f(x)的最小值为( )
| A.-6 | B.-3 | C.0 | D.1 |
由题意得
,解得
,
∴f(x)=log2(4x-4•2x+6)=log2[(2x-2)2+2],
当x=1时,f(x)min =1,
故选D.
|
|
∴f(x)=log2(4x-4•2x+6)=log2[(2x-2)2+2],
当x=1时,f(x)min =1,
故选D.
练习册系列答案
相关题目