题目内容

已知函数f(x)=log2(ax-4bx+6),满足f(1)=1,f(2)=log26,a,b为正实数.则f(x)的最小值为(  )
A.-6B.-3C.0D.1
由题意得
a-4b+6=2
a2-4b2+6=6
,解得
b=2
a=4

∴f(x)=log2(4x-4•2x+6)=log2[(2x-2)2+2],
当x=1时,f(x)min =1,
故选D.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网