题目内容

已知数列{an}满足a1=1,an=2an-1+n-2.
(I)求数列{an}的通项公式;
(II)若数列{bn}中b2=4,前n项和为Sn,且4Sn-n=(an+n)bn(n∈N*)证明:(1+
1
bn
)
1
2
b
n
5
3
分析:(I)根据an=2an-1+n-2(n≥2),可得数列{an+n}是以首项a1+1,公比为2的等比数列,从而可求数列{an}的通项公式;
(II)利用4Sn-n=(an+n)bn(n∈N*),再写一式,两式相减可得2(bn+1-1)=(n+1)bn+1-nbn,同样再写一式,两式相减,可得{bn}是等差数列,进而可得bn=2n,由此可证结论.
解答:(I)解:∵an=2an-1+n-2(n≥2),∴an+n=2(an-1+n-1)
∴数列{an+n}是以首项a1+1,公比为2的等比数列,即an+n=2×2n-1=2n
∴an=2n-n
(II)证明:∵4Sn-n=(an+n)bn(n∈N*
∴4Sn-n=2nbn
∴2Sn-2n=nbn,…①
∴2Sn+1-2(n+1)=(n+1)bn+1,…②
②-①,得2(bn+1-1)=(n+1)bn+1-nbn
∴(n-1)bn+1-nbn+2=0    …③
∴nbn+2-(n+1)bn+1+2=0 …④
④-③得nbn+2-2nbn+1+nbn=0
∴bn+2-2bn+1+bn=0
∴bn+2-bn+1=bn+1-bn
∴{bn}是等差数列.
∵b1=2,b2=4,∴bn=2n
(1+
1
bn
)
1
2
b
n
=(1+
1
2n
)n
<1+
1
2
+…+
1
22n-1
=1+
2
3
(1-
1
4n
)
5
3
点评:本题考查数列递推式,考查数列的通项,考查不等式的证明,确定数列为等差数列,适当放缩是关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网