题目内容
若0<α<β<
,a=
sin(α+
),b=
sin(β+
),则( )
| π |
| 4 |
| 2 |
| π |
| 4 |
| 2 |
| π |
| 4 |
分析:由α和β的大小关系判断出:“α+
”和“β+
”的大小关系,并确定所在的区间,再根据正弦函数在区间上的单调性比较a和b的大小.
| π |
| 4 |
| π |
| 4 |
解答:解:∵0<α<β<
,∴
<α+
<β+
<
.
∵正弦函数y=sin x在[0,
]上递增,
∴sin(α+
)<sin(β+
).
∴
sin(α+
)<
sin(β+
),
即a<b.
故选A.
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| π |
| 2 |
∵正弦函数y=sin x在[0,
| π |
| 2 |
∴sin(α+
| π |
| 4 |
| π |
| 4 |
∴
| 2 |
| π |
| 4 |
| 2 |
| π |
| 4 |
即a<b.
故选A.
点评:本题考查了正弦函数的单调性的应用,关键是判断自变量的大小关系和所在的区间.
练习册系列答案
相关题目