题目内容
已知数列{an}的前n项和为Sn,且Sn=2an-2(n=1,2,3,…)
(1)求数列{an}通项公式an;
(2)设bn=
,数列{an}的前n项和为Tn,
求证:
≤Tn<1.
(1)求数列{an}通项公式an;
(2)设bn=
| an |
| (an-1)(2an-1) |
求证:
| 2 |
| 3 |
分析:(1)n=1时,a1=2.由Sn=2an-2,Sn-1=2an-1-2,知Sn-Sn-1=an,n≥2,n∈N*,由此能导出an=2n.
(2)由bn=
=
-
,知Tn=(1-
)+(
-
)+(
-
)+…+(
-
)
=1-
.由此能够证明
≤Tn<1.
(2)由bn=
| an |
| (an-1)(2an-1) |
| 1 |
| 2n-1 |
| 1 |
| 2n+1-1 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 7 |
| 1 |
| 7 |
| 1 |
| 15 |
| 1 |
| 2 n-1 |
| 1 |
| 2n+1-1 |
=1-
| 1 |
| 2n+1-1 |
| 2 |
| 3 |
解答:解:(1)n=1时,a1=S1=2a1-2,
∴a1=2.
∵Sn=2an-2,Sn-1=2an-1-2,
∵Sn-Sn-1=an,n≥2,n∈N*,
∴an=2an-2an-1,
∵an≠0,
∴
=2,n≥2,n∈N*,
即数列{an}是等比数列,首项a1=2,公比q=2,
∴an=2n.
(2)∵bn=
=
=
-
,
∴Tn=(1-
)+(
-
)+(
-
)+…+(
-
)
=1-
.(10分)
∵n∈N*,
∴0<
≤
,
≤Tn<1.(12分)
∴a1=2.
∵Sn=2an-2,Sn-1=2an-1-2,
∵Sn-Sn-1=an,n≥2,n∈N*,
∴an=2an-2an-1,
∵an≠0,
∴
| an |
| an-1 |
即数列{an}是等比数列,首项a1=2,公比q=2,
∴an=2n.
(2)∵bn=
| an |
| (an-1)(2an-1) |
=
| 2n |
| (2n-1)(2n+1-1) |
=
| 1 |
| 2n-1 |
| 1 |
| 2n+1-1 |
∴Tn=(1-
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 7 |
| 1 |
| 7 |
| 1 |
| 15 |
| 1 |
| 2 n-1 |
| 1 |
| 2n+1-1 |
=1-
| 1 |
| 2n+1-1 |
∵n∈N*,
∴0<
| 1 |
| 2n+1-1 |
| 1 |
| 3 |
| 2 |
| 3 |
点评:本题考查数列的通项公式的求解和前n项和的证明,解题时要认真审题,仔细解答,注意数列与不等式的综合运用,注意挖掘题设中的隐含条件,合理地进行等价转化.
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |