题目内容

已知数列{an}的前n项和Sn=1-kan(k>0,n∈N*).
(1)用n、k表示an
(2)数列{bn}对n∈N*均有(bn+1-bn+2)lga1+(bn+2-bn)lga3+(bn-bn+1)lga5=0,求证:数列{bn}为等差数列;
(3)在(1)、(2)中,设k=1,bn=n+1,xn=a1b1+a2b2+a3b3+…+anbn,求证:xn<3.
(1)∵Sn=1-kan
∴S1=a1=1-ka1
∴a1=
1
k+1

∴an+1=Sn+1-Sn=(1-kan+1)-(1-kan),
∴an+1=kan-kan+1,即 (k+1)an+1=kan
∵kk≠1解得an+1=
k
k+1
an(1)
∵k>0,a1≠0,由(1)式易知an≠0,n≥1,
an+1
an
=
k
k+1

故该数列是公比为
k
k+1
,首项为
1
k+1
的等比数列,
∴an=
1
k+1
×(
k
k+1
n-1
证明:(2)∵(bn+1-bn+2)lga1+(bn+2-bn)lga3+(bn-bn+1)lga5=0,
∴(bn+1-bn+2)lg
1
k+1
+(bn+2-bn)lg[(
1
k+1
×(
k
k+1
2]+(bn-bn+1)lg[(
1
k+1
×(
k
k+1
4]=0…①
令lg
1
k+1
=m,lg
k
k+1
=n,则m,n均不为0
则①式可化为m(bn+1-bn+2)+(m+2n)(bn+2-bn)+(m+4n)(bn-bn+1)=0
即bn+2+bn=2bn+1
即数列{bn}为等差数列;
(3)若k=1,an=
1
k+1
×(
k
k+1
n-1=(
1
2
n
又∵bn=n+1,
∴xn=
1
2
×2+(
1
2
)2
×3+(
1
2
)
3
×4+…+(
1
2
)
n
(n+1)…①,
1
2
xn=(
1
2
)2
×2+(
1
2
)
3
×3+…+(
1
2
)
n
n+(
1
2
)
n+1
(n+1)…②
①-②得
1
2
xn=1+[(
1
2
)2
+(
1
2
)
3
+…+(
1
2
)
n
]-(
1
2
)
n+1
(n+1)=
3
2
-
n+3
2
(
1
2
)
n

∴xn=3-(n+3)(
1
2
)
n

∵(n+3)(
1
2
)
n
>0
∴xn<3
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网