题目内容
已知函数
令
(1)求
的定义域;
(2)判断函数
的奇偶性,并予以证明;
(3)若
,猜想
之间的关系并证明.
(1)求
(2)判断函数
(3)若
(1)
;(2)见解析;(3)见解析.
(1)求定义域是使式子有意义的x的取值集合.
解:(1)由题意可知,
,得定义域为
-----------4分
(2)定义域关于原点对称,且

所以
为奇函数----------------------------9分
(3)当
,
又

所以
相等-------------------15分
(2)判断奇偶性,一看定义域是否关于原点对称,二看
是否成立.最后下结论.
(3)采用左右共同推证的综合法进行证明.
解:(1)由题意可知,
(2)定义域关于原点对称,且
所以
(3)当
又
所以
(2)判断奇偶性,一看定义域是否关于原点对称,二看
(3)采用左右共同推证的综合法进行证明.
练习册系列答案
相关题目