题目内容

已知函数f(x)=lnx-ax(a∈R).
(1)求f(x)的单调区间;
(2)若a=1,且b≠0,函数g(x)=
13
bx3-bx
,若对任意的x1∈(1,2),总存在x2∈(1,2),使f(x1)=g(x2),求实数b的取值范围.
分析:(1)先确定函数f(x)的定义域,然后对函数f(x)求导,根据导函数大于0时原函数单调递增,导函数小于0时原函数单调递减求出单调区间.
(2)分别表示出函数f(x)、g(x)的值域,根据f(x)的值域应为g(x)的值域的子集可得答案.
解答:解:(1)f(x)=lnx-ax,
∴x>0,即函数f(x)的定义域为(0,+∞)
∴当a≤0时,f(x)在(0,+∞)上是增函数
当a>0时,∵f'(x)=
1
x
-a
=
1-ax
x

f′(x)>0,则1-ax>0,ax<1,x<
1
a
f′(x)<0,则1-ax<0,ax>1,x>
1
a

即当a>0时f(x)在(0,
1
a
)
上是增函数,在(
1
a
,+∞)
上是减函数.
(2)设f(x)的值域为A,g(x)的值域为B,
则由已知,对于任意的x1∈(1,2),总存在x2∈(1,2),
使f(x1)=g(x2),得A⊆B
由(1)知a=1时,f(x)在(1,+∞)上是减函数,
∴f(x)在x∈(1,2)上单调递减,
∴f(x)的值域为A=(ln2-2,-1)
∵g'(x)=bx2-b=b(x-1)(x+1)
∴(i)当b<0时,g(x)在(1,2)上是减函数,
此时,g(x)的值域为B=(
2
3
b,-
2
3
b)

为满足A⊆B,又-
2
3
b≥0>-1

2
3
b≤ln2-2.
b≤
3
2
ln2-3.

(ii)当b>0时,g(x)在(1,2)上是单调递增函数,
此时,g(x)的值域为B=(-
2
3
b,
2
3
b)

为满足A⊆B,又
2
3
b≥0>-1.

-
2
3
b≤ln2-2

b≥-
3
2
(ln2-2)=3-
3
2
ln2

综上可知b的取值范围是(-∞,
3
2
ln2-3]∪[3-
3
2
ln2,+∞)
点评:本题主要考查函数单调性与其导函数的正负之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网