题目内容
3.已知a,b,c分别为△ABC三个内角A,B,C的对边,且满足sinA+$\sqrt{3}$cosA=2.(1)求A的大小;
(2)现给出三个条件①B=45°;②a=2;③c=$\sqrt{3}$b.试从中选出两个可以确定△ABC的条件,写出你的选择并以此为依据求△ABC的面积.(注:只能写出一个选定方案即可,选多种方案以第一种方案计分)
分析 (1)由sinA+$\sqrt{3}$cosA=2.利用和差公式即可得出.
(2)通过分类讨论,利用正弦定理余弦定理、三角形面积计算公式即可得出.
解答 解:(1)$sinA+\sqrt{3}cosA=2⇒2sin(A+\frac{π}{3})⇒2⇒A+\frac{π}{3}=\frac{π}{2}$,
∴$A=\frac{π}{6}$.
(2)选①②:$B=\frac{π}{4}$,$A=\frac{π}{6}$,a=2,$c=π-\frac{π}{6}-\frac{π}{4}=\frac{7π}{12}$,
∴$\frac{a}{sinA}=\frac{b}{sinB}⇒\frac{2}{{\frac{1}{2}}}=\frac{b}{{\frac{{\sqrt{2}}}{2}}}⇒b=2\sqrt{2}$.${S_{△ABC}}=\frac{1}{2}absinC=\frac{1}{2}×2×2\sqrt{2}×\frac{{\sqrt{6}+\sqrt{2}}}{4}$=$\sqrt{3}+1$.
选①③:b2+c2-2bccosA=a2,∴b2+3b2-3b2=4,解得b=2,c=2$\sqrt{3}$.
∴S=$\frac{1}{2}$bcsinA=$\sqrt{3}$.
若选择②③,由$c=\sqrt{3}b$得:$sinC=\sqrt{3}sinB=\frac{{\sqrt{6}}}{2}>1$,不成立,这样的三角形不存在.
点评 本题考查了和差公式、正弦定理余弦定理、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
13.角θ的终边过点(sin(α-$\frac{π}{3}$),$\sqrt{3}$),且sin2θ≤0,则α的可能取值范围是( )
| A. | [-$\frac{2π}{3}$,$\frac{π}{3}$] | B. | [$\frac{π}{3}$,$\frac{4π}{3}$] | C. | [-$\frac{5π}{3}$,-$\frac{2π}{3}$] | D. | [0,π] |
18.某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)在某一周期内的图象时,列表并填入部分数据,如表:
(1)请将上表数据补充完整,填写在答题卡相应的位置,并求f(x)的解析式;
(2)将函数f(x)的图象上每一点的纵坐标缩短到原来的$\frac{1}{2}$倍,横坐标不变,得到函数g(x)的图象.试求g(x)在区间[π,$\frac{5π}{2}$]上的最值.
(1)请将上表数据补充完整,填写在答题卡相应的位置,并求f(x)的解析式;
(2)将函数f(x)的图象上每一点的纵坐标缩短到原来的$\frac{1}{2}$倍,横坐标不变,得到函数g(x)的图象.试求g(x)在区间[π,$\frac{5π}{2}$]上的最值.
| ωx+φ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
| x | 2π | $\frac{13π}{2}$ | |||
| f(x) | 0 | 4 | -4 | 0 |
15.
函数y=Asin($\overline{ω}$x+φ)(A>0,$\overline{ω}$>0,0<φ<π)在一个周期内的图象如图,此函数的解析式为( )
| A. | y=2sin(2x+$\frac{2π}{3}$) | B. | y=2sin(2x+$\frac{π}{3}$) | C. | y=2sin($\frac{x}{2}$-$\frac{π}{3}$) | D. | y=2sin(2x-$\frac{π}{3}$) |