题目内容

过抛物线y2=4x的焦点F的直线交抛物线于A,B两点,点O是坐标原点,则|AF|•|BF|的最小值是(  )
分析:由抛物线y2=4x与过其焦点(1,0)的直线方程联立,消去y整理成关于x的一元二次方程,设出A(x1,y1)、B(x2,y2)两点坐标,再依据抛物线的定义得出|AF|•|BF|=x1x2+x1+x2+1,由韦达定理可以求得答案.
解答:解:由题意知,抛物线y2=4x的焦点坐标为(1,0),
当斜率k存在时,设直线AB的方程为y=k(x-1),
y2=4x 
y=k(x-1)
⇒k2x2-(2k2+4)x+k2=0.
设出A(x1,y1)、B(x2,y2
则 x1+x2=
2k2+4
k2
,x1x2=1.
依据抛物线的定义得出|AF|•|BF|=(x1+1)(x2+1)=x1x2+x1+x2+1,
∴|AF|•|BF|=
2k2+4
k2
+2=4+
4
k2
>4.
当斜率k不存在时,|AF|•|BF|=2×2=4.
则|AF|•|BF|的最小值是4.
故选C.
点评:本题考查直线与圆锥曲线的关系,解决问题的关键是联立抛物线方程与过其焦点的直线方程,利用韦达定理予以解决,属于基础题.需要注意对斜率不存在的情况加以研究.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网