题目内容
已知椭圆C:| x2 |
| a2 |
| y2 |
| b2 |
| ||
| 2 |
| AF |
| FB |
分析:设l为椭圆的右准线,过A、B作AA1,BB1垂直于l,A1,B1为垂足,由
=3
知,|AA1|=3|BB1|,
cos∠BAE=
=
=
,可得sin∠BAE=
,tan∠BAE=2=k.
| AF |
| FB |
cos∠BAE=
| |AE| |
| |AB| |
| 2|BB1| |
| |AB| |
| ||
| 3 |
| ||
| 3 |
解答:解:设l为椭圆的右准线,过A、B作AA1,BB1垂直于l,A1,B1为垂足,
过B作BE⊥AA1于E,则|AA1|=
,|BB1|=
.
由
=3
知,|AA1|=3|BB1|,
∴cos∠BAE=
=
=
=
,∴sin∠BAE=
,
∴tan∠BAE=
,∴k=
,
故答案为:
.
过B作BE⊥AA1于E,则|AA1|=
| |AF| |
| e |
| |BF| |
| e |
由
| AF |
| FB |
∴cos∠BAE=
| |AE| |
| |AB| |
| 2|BB1| |
| |AB| |
2×
| ||
| 4 |BF| |
| ||
| 3 |
| ||
| 3 |
∴tan∠BAE=
| 2 |
| 2 |
故答案为:
| 2 |
点评:本题考查椭圆的性质和应用,解题时要认真审题,仔细解答.
练习册系列答案
相关题目