题目内容

函数f(x)=ax3+(a-1)x2+48(b-3)x+b的图象关于原点中心对称,则f(x)(  )
A.有极大值和极小值B.有极大值无极小值
C.无极大值有极小值D.无极大值无极小值
由题意,∵函数f(x)=ax3+(a-1)x2+48(b-3)x+b的图象关于原点中心对称,
∴f(0)=0
∴b=0
∴f(x)=ax3+(a-1)x2+144x
∴f′(x)=3ax2+2(a-1)x+144
∴3ax2+2(a-1)x+144=0的根的判别式为△=4(a-1)2-12a×144=4(a2-434a+1)
∵△=4342-4>0
∴3ax2+2(a-1)x+144=0有两个不相等的实数根
∴f(x)有极大值和极小值.
故选A.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网