题目内容

精英家教网如图,四棱锥P-ABCD的底面ABCD为一直角梯形,侧面PAD是等边三角形,其中BA⊥AD,CD⊥AD,CD=2AD=2AB,平面PAD⊥底面ABCD,E是PC的中点.
(1)求证:BE∥平面PAD;
(2)求证:BE⊥CD;
(3)求BD与平面PDC所成角的正弦值.
分析:(1)证BE∥平面PAD,可先构建平面EBM,证明平面EBM∥平面APD,由面面平行,得到线面平行;
(2)取PD的中点F,连接FE,根据线面垂直的判定及性质,及等腰三角形性质,结合线面垂直的判定定理可得AF⊥平面PDC,又由BE∥AF,可得BE⊥平面PDC;
(3)证明AF⊥平面PCD,连接DE,则∠BDE为BD与平面PDC所成角.
解答:精英家教网(1)证明:如图,取CD的中点M,连接EM、BM,则四边形ABMD为矩形
∴EM∥PD,BM∥AD;
又∵BM∩EM=M,
∴平面EBM∥平面APD;
而BE?平面EBM,
∴BE∥平面PAD;
(2)证明:取PD的中点F,连接FE,则FE∥DC,BE∥AF,
又∵DC⊥AD,DC⊥PA,
∴DC⊥平面PAD,
∴DC⊥AF,DC⊥PD,
∴EF⊥AF,
在Rt△PAD中,∵AD=AP,F为PD的中点,
∴AF⊥PD,又AF⊥EF且PD∩EF=F,
∴AF⊥平面PDC,又BE∥AF,
∴BE⊥平面PDC,
∴CD⊥BE;
(3)解:∵CD⊥AF,AF⊥PD,CD∩PD=D,
∴AF⊥平面PCD,
连接DE,则∠BDE为BD与平面PDC所成角.
在直角△BDE中,设AD=AB=a,则BE=AF=
3
2
a
,BD=
2
a,∴sin∠BDE=
BE
BD
=
6
4
点评:本题考查的知识点是直线与平面平行的判定,直线与平面垂直的判定,考查线面角,熟练掌握线面平行及线面垂直的判定定理是解答的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网