题目内容
已知各项均为正数的数列{an}的前n项和为Sn,满足S1>1,且6Sn=(an+1)(an+2),n∈N*
(1)求{an}通项公式;
(2)设数列{bn}满足an(2bn-1)=1,并记Tn为{bn}的前n项和,求证:3Tn+1>log2(an+3),n∈N*.
(1)求{an}通项公式;
(2)设数列{bn}满足an(2bn-1)=1,并记Tn为{bn}的前n项和,求证:3Tn+1>log2(an+3),n∈N*.
分析:(1)由各项均为正数的数列{an}的前n项和为Sn,满足S1>1,且6Sn=(an+1)(an+2),n∈N*,知6Sn=an2+3an+2,由此利用迭代法能求出{an}通项公式.
(2)由an(2bn-1)=1,an=3n-1.n∈N*,知bn=log2
,故Tn=log2(
×
×
×…×
),由此利用构造法能证明3Tn+1>log2(an+3),n∈N*.
(2)由an(2bn-1)=1,an=3n-1.n∈N*,知bn=log2
| 3n |
| 3n-1 |
| 3 |
| 2 |
| 6 |
| 5 |
| 8 |
| 9 |
| 3n |
| 3n-1 |
解答:解:(1)∵各项均为正数的数列{an}的前n项和为Sn,满足S1>1,
且6Sn=(an+1)(an+2),n∈N*,
∴6Sn=an2+3an+2,①
当n≥2时,6Sn-1=an-12+3an-1+2,②
①-②,得:6an=an2-an-12+3an-3an-1,
∴3an+3an-1=an2-an-12,
∴3(an+an-1)=(an+an-1)(an-an-1),
∵an>0,
∴an-an-1=3,n≥2,
当n=1时,6a1=a12+3a1+2,
解得a1=1,或a1=2,
∵S1=a1>1,∴a1=1,
∴数列{an}是以2为首项,以3为公差的等差数列,
∴an=3n-1.n∈N*.
(2)∵an(2bn-1)=1,an=3n-1.n∈N*,
∴bn=log2
,
∴Tn=log2(
×
×
×…×
),
∵3Tn+1>log2(an+3),n∈N*,
∴3log2(
×
×
×…×
)+1>log2(3n+2),
∴log2
>0,
令f(n)=
,
则f(n+1)-f(n)>0,
∴f(n)≥f(1)=
>1,
∴3Tn+1>log2(an+3),n∈N*.
且6Sn=(an+1)(an+2),n∈N*,
∴6Sn=an2+3an+2,①
当n≥2时,6Sn-1=an-12+3an-1+2,②
①-②,得:6an=an2-an-12+3an-3an-1,
∴3an+3an-1=an2-an-12,
∴3(an+an-1)=(an+an-1)(an-an-1),
∵an>0,
∴an-an-1=3,n≥2,
当n=1时,6a1=a12+3a1+2,
解得a1=1,或a1=2,
∵S1=a1>1,∴a1=1,
∴数列{an}是以2为首项,以3为公差的等差数列,
∴an=3n-1.n∈N*.
(2)∵an(2bn-1)=1,an=3n-1.n∈N*,
∴bn=log2
| 3n |
| 3n-1 |
∴Tn=log2(
| 3 |
| 2 |
| 6 |
| 5 |
| 8 |
| 9 |
| 3n |
| 3n-1 |
∵3Tn+1>log2(an+3),n∈N*,
∴3log2(
| 3 |
| 2 |
| 6 |
| 5 |
| 8 |
| 9 |
| 3n |
| 3n-1 |
∴log2
2(
| ||||||||
| 3n+2 |
令f(n)=
2(
| ||||||||
| 3n+2 |
则f(n+1)-f(n)>0,
∴f(n)≥f(1)=
| 27 |
| 25 |
∴3Tn+1>log2(an+3),n∈N*.
点评:本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,仔细解答,注意迭代法和构造法的合理运用.
练习册系列答案
相关题目