题目内容

已知f(x)=2cosx(
3
sinx+cosx)-1

(1)求函数y=f(x)(0<x<π)的单调递增区间;
(2)设△ABC的内角A满足f(A)=2,而
AB
AC
=
3
,求BC边上的高AD长的最大值.
(1)f(x)=2
3
cosxsinx+2cos2x-1=
3
sin2x+cos2x=2sin(2x+
π
6
)
(3分)
-
π
2
+2kπ≤2x+
π
6
π
2
+2kπ
解得kπ-
π
3
≤x≤kπ+
π
6
,k∈Z;(2分)
所以在0<x<π时函数y=f(x)的单调递增区间是(0,
π
6
]
[
3
,π)
.(2分)
(2)由f(A)=2知A=
π
6
(1分)
AB
AC
=
3
知bc=2(1分)∴S△ABC=
1
2
bcsinA=
1
2
(1分)
a=
b2+c2-
3
bc
(2-
3
)bc
=
3
-1
(2分)
所以求BC边上的高AD
3
+1
2
.(1分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网