题目内容
(A)
(B)
(C)1
(D)
A
(本小题满分12分)
已知抛物线y2=mx的焦点到准线距离为1,且抛物线开口向右.
(Ⅰ)求m的值;
(Ⅱ)P是抛物线y2=mx上的动点,点B,C在y轴上,圆(x-1)2+y2=1内切于
△PBC,求△PBC面积的最小值.
已知,A是抛物线y2=2x上的一动点,过A作圆(x-1)2+y2=1的两条切线分别切圆于EF两点,交抛物线于M.N两点,交y轴于 B.C两点
(1)当A点坐标为(8,4)时,求直线EF的方程;
(2)当A点坐标为(2,2)时,求直线MN的方程;
(3)当A点的横坐标大于2时,求△ABC面积的最小值。
已知抛物线y2=2px(p>0)的准线与圆(x-1)2+y2=4相切,则p= ;