题目内容
已知函数
.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)设函数g(x)=xf(x)+tf'(x)+e-x(t∈R).是否存在实数a、b、c∈[0,1],使得g(a)+g(b)<g(c)?若存在,求实数t的取值范围;若不存在,请说明理由.
解:(Ⅰ)
当x≥0时,
,函数在区间(0,+∞)上为减函数;当x<0时,
,函数在区间(-∞,0)上为增函数
(Ⅱ)假设存在a,b,c∈[0,1]使得g(a)+g(b)<g(c),2[g(x)]min<[g(x)]max
∵
,∴
①当t≥1时,g′(x)≤0,g(x)在[0,1]上单调递减,∴2g(1)<g(0)即
得
②当t≤0时,g′(x)≥0,g(x)在[0,1]上单调递增,∴2g(0)<g(1)即
得t<3-2e<0,
③当0<t<1时,在x∈[0,t),
g′(x)<0,g(x)在[0,t]上单调递减,
在x∈(t,1],g′(x)>0,g(x)在[t,1]上单调递增,
此时g(x)的最小值为g(t),最大值为max{g(0),g(1)},
∴2g(t)<max{g(0),g(1)},即
(★) …(13分)
由(1)知
在t∈[0,1]上单调递减,故
,而
,∴不等式(★)无解 …(15分)
综上所述,存在
,使得命题成立.
分析:(Ⅰ)求导函数,利用导数小于(等于)0,求得函数的单调减区间;利用导数大于(等于)0,求得函数的单调增区间;
(Ⅱ)假设存在a,b,c∈[0,1]使得g(a)+g(b)<g(c),则问题转化为2[g(x)]min<[g(x)]max,对t进行讨论,确定函数的单调性,从而确定函数的最值,进而确定实数t的取值范围.
点评:本题主要考查利用导数求函数的单调区间,求函数的最值,注意分类讨论思想的运用,属于中档题.
当x≥0时,
(Ⅱ)假设存在a,b,c∈[0,1]使得g(a)+g(b)<g(c),2[g(x)]min<[g(x)]max
∵
①当t≥1时,g′(x)≤0,g(x)在[0,1]上单调递减,∴2g(1)<g(0)即
②当t≤0时,g′(x)≥0,g(x)在[0,1]上单调递增,∴2g(0)<g(1)即
③当0<t<1时,在x∈[0,t),
g′(x)<0,g(x)在[0,t]上单调递减,
在x∈(t,1],g′(x)>0,g(x)在[t,1]上单调递增,
此时g(x)的最小值为g(t),最大值为max{g(0),g(1)},
∴2g(t)<max{g(0),g(1)},即
由(1)知
综上所述,存在
分析:(Ⅰ)求导函数,利用导数小于(等于)0,求得函数的单调减区间;利用导数大于(等于)0,求得函数的单调增区间;
(Ⅱ)假设存在a,b,c∈[0,1]使得g(a)+g(b)<g(c),则问题转化为2[g(x)]min<[g(x)]max,对t进行讨论,确定函数的单调性,从而确定函数的最值,进而确定实数t的取值范围.
点评:本题主要考查利用导数求函数的单调区间,求函数的最值,注意分类讨论思想的运用,属于中档题.
练习册系列答案
相关题目
已知函数
.
(1)求
的最小值;
(2)当函数自变量的取值区间与对应函数值的取值区间相同时,这样的区间称为函数的保值区间.设
,试问函数
在
上是否存在保值区间?若存在,请求出一个保值区间;若不存在,请说明理由.
已知函数
的定义域为
,若
在
上为增函数,则称
为“一阶比增函数”;若
在
上为增函数,则称
为“二阶比增函数”.我们把所有“一阶比增函数”组成的集合记为
,所有“二阶比增函数”组成的集合记为
.
(Ⅰ)已知函数
,若
且
,求实数
的取值范围;
(Ⅱ)已知
,
且
的部分函数值由下表给出,
|
|
|
|
|
|
|
|
|
|
|
|
求证:
;
(Ⅲ)定义集合![]()
请问:是否存在常数
,使得
,
,有
成立?若存在,求出
的最小值;若不存在,说明理由.