题目内容
设平面内两个向量a=(cosα,sinα),b=(cosβ,sinβ),且0<α<β<π.(1)证明:(a+b)⊥(a-b);
(2)若两个向量ka+b与a-kb的模相等,求
β-α的值(k≠0,k∈R).
(1)证法1:∵a=(cosα,sinα),
b=(cosβ,sinβ),
∴a+b=(cosα+cosβ,sinα+sinβ),
a-b=(cosα-cosβ,sinα-sinβ).
∴(a+b)·(a-b)
=(cosα+cosβ)(cosα-cosβ)+(sinα+sinβ)(sinα-sinβ)
=cos2α-cos2β+sin2α-sin2β
=1-1=0,
∴(a+b)⊥(a-b)
证法2:(a+b)·(a-b)=a2-b2
=|a|2-|b|2
=(cos2α+sin2α)-(cos2β+sin2β)
=1-1=0,
∴(a+b)⊥(a-b).
(2)解:∵|ka+b|2=(ka+b)2
=k2a2+2ka·b+b2.
而|a-kb|2=a2-2ka·b+k2b2,
又|ka+b|=|a-kb|,
∴k2a2+2ka·b+b2=a2-2ka·b+k2b2.
(k2-1)a2+4ka·b+(1-k2)b2=0,
又|a|=|b|=1,
∴4ka·b=0.
∵k≠0,∴a·b=0.
∵a·b=cos(α-β),
∴cos(α-β)=0,cos(β-α)=0.
∴β-α=kπ+
,k∈Z.
练习册系列答案
相关题目