题目内容

设平面内两个向量a=(cosα,sinα),b=(cosβ,sinβ),且0<α<β<π.

(1)证明:(a+b)⊥(a-b);

(2)若两个向量ka+ba-kb的模相等,求

β-α的值(k≠0,k∈R).

(1)证法1:∵a=(cosα,sinα),

b=(cosβ,sinβ),

a+b=(cosα+cosβ,sinα+sinβ),

a-b=(cosα-cosβ,sinα-sinβ).

∴(a+b)·(a-b

=(cosα+cosβ)(cosα-cosβ)+(sinα+sinβ)(sinα-sinβ)

=cos2α-cos2β+sin2α-sin2β

=1-1=0,

∴(a+b)⊥(a-b

证法2:(a+b)·(a-b)=a2-b2

=|a|2-|b|2

=(cos2α+sin2α)-(cos2β+sin2β)

=1-1=0,

∴(a+b)⊥(a-b).

(2)解:∵|ka+b|2=(ka+b2

=k2a2+2ka·b+b2.

而|a-kb|2=a2-2ka·b+k2b2

又|ka+b|=|a-kb|,

∴k2a2+2ka·b+b2=a2-2ka·b+k2b2.

(k2-1)a2+4ka·b+(1-k2b2=0,

又|a|=|b|=1,

∴4ka·b=0.

∵k≠0,∴a·b=0.

a·b=cos(α-β),

∴cos(α-β)=0,cos(β-α)=0.

∴β-α=kπ+,k∈Z.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网