题目内容
已知函数f ( x )=sinx-2x,若f(x2+y2+4x+2)≥0,则x2+y2+4y+2的最大值为( )
A.
| B.3
| C.12 | D.16 |
由题意由于sinx-2x≤0在[0,+∞)上恒成立,可得f ( x )=sinx-2x>0在(-∞,0)上恒成立,
又f(x2+y2+4x+2)≥0
∴x2+y2+4x+2≤0,此是一个以点(-2,0)为圆心,以
为半径的圆面
而x2+y2+4y+2的最大值可以看作圆面上的点到定点(0,-2)的最远距离的平方-2,
由于点(-2,0)与点(0,-2)距离为2
,
故圆面上的点到定点(0,-2)的最远距离为3
所以x2+y2+4y+2的最大值为18-2=16
故选D
又f(x2+y2+4x+2)≥0
∴x2+y2+4x+2≤0,此是一个以点(-2,0)为圆心,以
| 2 |
而x2+y2+4y+2的最大值可以看作圆面上的点到定点(0,-2)的最远距离的平方-2,
由于点(-2,0)与点(0,-2)距离为2
| 2 |
故圆面上的点到定点(0,-2)的最远距离为3
| 2 |
所以x2+y2+4y+2的最大值为18-2=16
故选D
练习册系列答案
相关题目
已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
}的前n项和为Sn,则S2010的值为( )
| 1 |
| f(n) |
A、
| ||
B、
| ||
C、
| ||
D、
|